vega-util-1.17.2",[],(function $module_vega_util_1_17_2(global,require,requireDynamic,requireLazy,module,exports){
/** This file contains third-party code that is licensed as follows:
Copyright (c) 2015-2023, University of Washington Interactive Data Lab
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**/
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.vega = {}));
})(this, (function (exports) { 'use strict';
function accessor (fn, fields, name) {
fn.fields = fields || [];
fn.fname = name;
return fn;
}
function accessorName(fn) {
return fn == null ? null : fn.fname;
}
function accessorFields(fn) {
return fn == null ? null : fn.fields;
}
function getter (path) {
return path.length === 1 ? get1(path[0]) : getN(path);
}
const get1 = field => function (obj) {
return obj[field];
};
const getN = path => {
const len = path.length;
return function (obj) {
for (let i = 0; i < len; ++i) {
obj = obj[path[i]];
}
return obj;
};
};
function error (message) {
throw Error(message);
}
function splitAccessPath (p) {
const path = [],
n = p.length;
let q = null,
b = 0,
s = '',
i,
j,
c;
p = p + '';
function push() {
path.push(s + p.substring(i, j));
s = '';
i = j + 1;
}
for (i = j = 0; j < n; ++j) {
c = p[j];
if (c === '\\') {
s += p.substring(i, j++);
i = j;
} else if (c === q) {
push();
q = null;
b = -1;
} else if (q) {
continue;
} else if (i === b && c === '"') {
i = j + 1;
q = c;
} else if (i === b && c === "'") {
i = j + 1;
q = c;
} else if (c === '.' && !b) {
if (j > i) {
push();
} else {
i = j + 1;
}
} else if (c === '[') {
if (j > i) push();
b = i = j + 1;
} else if (c === ']') {
if (!b) error('Access path missing open bracket: ' + p);
if (b > 0) push();
b = 0;
i = j + 1;
}
}
if (b) error('Access path missing closing bracket: ' + p);
if (q) error('Access path missing closing quote: ' + p);
if (j > i) {
j++;
push();
}
return path;
}
function field (field, name, opt) {
const path = splitAccessPath(field);
field = path.length === 1 ? path[0] : field;
return accessor((opt && opt.get || getter)(path), [field], name || field);
}
const id = field('id');
const identity = accessor(_ => _, [], 'identity');
const zero = accessor(() => 0, [], 'zero');
const one = accessor(() => 1, [], 'one');
const truthy = accessor(() => true, [], 'true');
const falsy = accessor(() => false, [], 'false');
function log$1(method, level, input) {
const args = [level].concat([].slice.call(input));
console[method].apply(console, args); // eslint-disable-line no-console
}
const None = 0;
const Error$1 = 1;
const Warn = 2;
const Info = 3;
const Debug = 4;
function logger (_, method, handler = log$1) {
let level = _ || None;
return {
level(_) {
if (arguments.length) {
level = +_;
return this;
} else {
return level;
}
},
error() {
if (level >= Error$1) handler(method || 'error', 'ERROR', arguments);
return this;
},
warn() {
if (level >= Warn) handler(method || 'warn', 'WARN', arguments);
return this;
},
info() {
if (level >= Info) handler(method || 'log', 'INFO', arguments);
return this;
},
debug() {
if (level >= Debug) handler(method || 'log', 'DEBUG', arguments);
return this;
}
};
}
var isArray = Array.isArray;
function isObject (_) {
return _ === Object(_);
}
const isLegalKey = key => key !== '__proto__';
function mergeConfig(...configs) {
return configs.reduce((out, source) => {
for (const key in source) {
if (key === 'signals') {
// for signals, we merge the signals arrays
// source signals take precedence over
// existing signals with the same name
out.signals = mergeNamed(out.signals, source.signals);
} else {
// otherwise, merge objects subject to recursion constraints
// for legend block, recurse for the layout entry only
// for style block, recurse for all properties
// otherwise, no recursion: objects overwrite, no merging
const r = key === 'legend' ? {
layout: 1
} : key === 'style' ? true : null;
writeConfig(out, key, source[key], r);
}
}
return out;
}, {});
}
function writeConfig(output, key, value, recurse) {
if (!isLegalKey(key)) return;
let k, o;
if (isObject(value) && !isArray(value)) {
o = isObject(output[key]) ? output[key] : output[key] = {};
for (k in value) {
if (recurse && (recurse === true || recurse[k])) {
writeConfig(o, k, value[k]);
} else if (isLegalKey(k)) {
o[k] = value[k];
}
}
} else {
output[key] = value;
}
}
function mergeNamed(a, b) {
if (a == null) return b;
const map = {},
out = [];
function add(_) {
if (!map[_.name]) {
map[_.name] = 1;
out.push(_);
}
}
b.forEach(add);
a.forEach(add);
return out;
}
function peek (array) {
return array[array.length - 1];
}
function toNumber (_) {
return _ == null || _ === '' ? null : +_;
}
const exp = sign => x => sign * Math.exp(x);
const log = sign => x => Math.log(sign * x);
const symlog = c => x => Math.sign(x) * Math.log1p(Math.abs(x / c));
const symexp = c => x => Math.sign(x) * Math.expm1(Math.abs(x)) * c;
const pow = exponent => x => x < 0 ? -Math.pow(-x, exponent) : Math.pow(x, exponent);
function pan(domain, delta, lift, ground) {
const d0 = lift(domain[0]),
d1 = lift(peek(domain)),
dd = (d1 - d0) * delta;
return [ground(d0 - dd), ground(d1 - dd)];
}
function panLinear(domain, delta) {
return pan(domain, delta, toNumber, identity);
}
function panLog(domain, delta) {
var sign = Math.sign(domain[0]);
return pan(domain, delta, log(sign), exp(sign));
}
function panPow(domain, delta, exponent) {
return pan(domain, delta, pow(exponent), pow(1 / exponent));
}
function panSymlog(domain, delta, constant) {
return pan(domain, delta, symlog(constant), symexp(constant));
}
function zoom(domain, anchor, scale, lift, ground) {
const d0 = lift(domain[0]),
d1 = lift(peek(domain)),
da = anchor != null ? lift(anchor) : (d0 + d1) / 2;
return [ground(da + (d0 - da) * scale), ground(da + (d1 - da) * scale)];
}
function zoomLinear(domain, anchor, scale) {
return zoom(domain, anchor, scale, toNumber, identity);
}
function zoomLog(domain, anchor, scale) {
const sign = Math.sign(domain[0]);
return zoom(domain, anchor, scale, log(sign), exp(sign));
}
function zoomPow(domain, anchor, scale, exponent) {
return zoom(domain, anchor, scale, pow(exponent), pow(1 / exponent));
}
function zoomSymlog(domain, anchor, scale, constant) {
return zoom(domain, anchor, scale, symlog(constant), symexp(constant));
}
function quarter(date) {
return 1 + ~~(new Date(date).getMonth() / 3);
}
function utcquarter(date) {
return 1 + ~~(new Date(date).getUTCMonth() / 3);
}
function array (_) {
return _ != null ? isArray(_) ? _ : [_] : [];
}
/**
* Span-preserving range clamp. If the span of the input range is less
* than (max - min) and an endpoint exceeds either the min or max value,
* the range is translated such that the span is preserved and one
* endpoint touches the boundary of the min/max range.
* If the span exceeds (max - min), the range [min, max] is returned.
*/
function clampRange (range, min, max) {
let lo = range[0],
hi = range[1],
span;
if (hi < lo) {
span = hi;
hi = lo;
lo = span;
}
span = hi - lo;
return span >= max - min ? [min, max] : [lo = Math.min(Math.max(lo, min), max - span), lo + span];
}
function isFunction (_) {
return typeof _ === 'function';
}
const DESCENDING = 'descending';
function compare (fields, orders, opt) {
opt = opt || {};
orders = array(orders) || [];
const ord = [],
get = [],
fmap = {},
gen = opt.comparator || comparator;
array(fields).forEach((f, i) => {
if (f == null) return;
ord.push(orders[i] === DESCENDING ? -1 : 1);
get.push(f = isFunction(f) ? f : field(f, null, opt));
(accessorFields(f) || []).forEach(_ => fmap[_] = 1);
});
return get.length === 0 ? null : accessor(gen(get, ord), Object.keys(fmap));
}
const ascending = (u, v) => (u < v || u == null) && v != null ? -1 : (u > v || v == null) && u != null ? 1 : (v = v instanceof Date ? +v : v, u = u instanceof Date ? +u : u) !== u && v === v ? -1 : v !== v && u === u ? 1 : 0;
const comparator = (fields, orders) => fields.length === 1 ? compare1(fields[0], orders[0]) : compareN(fields, orders, fields.length);
const compare1 = (field, order) => function (a, b) {
return ascending(field(a), field(b)) * order;
};
const compareN = (fields, orders, n) => {
orders.push(0); // pad zero for convenient lookup
return function (a, b) {
let f,
c = 0,
i = -1;
while (c === 0 && ++i < n) {
f = fields[i];
c = ascending(f(a), f(b));
}
return c * orders[i];
};
};
function constant (_) {
return isFunction(_) ? _ : () => _;
}
function debounce (delay, handler) {
let tid;
return e => {
if (tid) clearTimeout(tid);
tid = setTimeout(() => (handler(e), tid = null), delay);
};
}
function extend (_) {
for (let x, k, i = 1, len = arguments.length; i < len; ++i) {
x = arguments[i];
for (k in x) {
_[k] = x[k];
}
}
return _;
}
/**
* Return an array with minimum and maximum values, in the
* form [min, max]. Ignores null, undefined, and NaN values.
*/
function extent (array, f) {
let i = 0,
n,
v,
min,
max;
if (array && (n = array.length)) {
if (f == null) {
// find first valid value
for (v = array[i]; i < n && (v == null || v !== v); v = array[++i]);
min = max = v;
// visit all other values
for (; i < n; ++i) {
v = array[i];
// skip null/undefined; NaN will fail all comparisons
if (v != null) {
if (v < min) min = v;
if (v > max) max = v;
}
}
} else {
// find first valid value
for (v = f(array[i]); i < n && (v == null || v !== v); v = f(array[++i]));
min = max = v;
// visit all other values
for (; i < n; ++i) {
v = f(array[i]);
// skip null/undefined; NaN will fail all comparisons
if (v != null) {
if (v < min) min = v;
if (v > max) max = v;
}
}
}
}
return [min, max];
}
function extentIndex (array, f) {
const n = array.length;
let i = -1,
a,
b,
c,
u,
v;
if (f == null) {
while (++i < n) {
b = array[i];
if (b != null && b >= b) {
a = c = b;
break;
}
}
if (i === n) return [-1, -1];
u = v = i;
while (++i < n) {
b = array[i];
if (b != null) {
if (a > b) {
a = b;
u = i;
}
if (c < b) {
c = b;
v = i;
}
}
}
} else {
while (++i < n) {
b = f(array[i], i, array);
if (b != null && b >= b) {
a = c = b;
break;
}
}
if (i === n) return [-1, -1];
u = v = i;
while (++i < n) {
b = f(array[i], i, array);
if (b != null) {
if (a > b) {
a = b;
u = i;
}
if (c < b) {
c = b;
v = i;
}
}
}
}
return [u, v];
}
const hop = Object.prototype.hasOwnProperty;
function has (object, property) {
return hop.call(object, property);
}
const NULL = {};
function fastmap (input) {
let obj = {},
test;
function has$1(key) {
return has(obj, key) && obj[key] !== NULL;
}
const map = {
size: 0,
empty: 0,
object: obj,
has: has$1,
get(key) {
return has$1(key) ? obj[key] : undefined;
},
set(key, value) {
if (!has$1(key)) {
++map.size;
if (obj[key] === NULL) --map.empty;
}
obj[key] = value;
return this;
},
delete(key) {
if (has$1(key)) {
--map.size;
++map.empty;
obj[key] = NULL;
}
return this;
},
clear() {
map.size = map.empty = 0;
map.object = obj = {};
},
test(_) {
if (arguments.length) {
test = _;
return map;
} else {
return test;
}
},
clean() {
const next = {};
let size = 0;
for (const key in obj) {
const value = obj[key];
if (value !== NULL && (!test || !test(value))) {
next[key] = value;
++size;
}
}
map.size = size;
map.empty = 0;
map.object = obj = next;
}
};
if (input) Object.keys(input).forEach(key => {
map.set(key, input[key]);
});
return map;
}
function flush (range, value, threshold, left, right, center) {
if (!threshold && threshold !== 0) return center;
const t = +threshold;
let a = range[0],
b = peek(range),
l;
// swap endpoints if range is reversed
if (b < a) {
l = a;
a = b;
b = l;
}
// compare value to endpoints
l = Math.abs(value - a);
const r = Math.abs(b - value);
// adjust if value is within threshold distance of endpoint
return l < r && l <= t ? left : r <= t ? right : center;
}
function inherits (child, parent, members) {
const proto = child.prototype = Object.create(parent.prototype);
Object.defineProperty(proto, 'constructor', {
value: child,
writable: true,
enumerable: true,
configurable: true
});
return extend(proto, members);
}
/**
* Predicate that returns true if the value lies within the span
* of the given range. The left and right flags control the use
* of inclusive (true) or exclusive (false) comparisons.
*/
function inrange (value, range, left, right) {
let r0 = range[0],
r1 = range[range.length - 1],
t;
if (r0 > r1) {
t = r0;
r0 = r1;
r1 = t;
}
left = left === undefined || left;
right = right === undefined || right;
return (left ? r0 <= value : r0 < value) && (right ? value <= r1 : value < r1);
}
function isBoolean (_) {
return typeof _ === 'boolean';
}
function isDate (_) {
return Object.prototype.toString.call(_) === '[object Date]';
}
function isIterable (_) {
return _ && isFunction(_[Symbol.iterator]);
}
function isNumber (_) {
return typeof _ === 'number';
}
function isRegExp (_) {
return Object.prototype.toString.call(_) === '[object RegExp]';
}
function isString (_) {
return typeof _ === 'string';
}
function key (fields, flat, opt) {
if (fields) {
fields = flat ? array(fields).map(f => f.replace(/\\(.)/g, '$1')) : array(fields);
}
const len = fields && fields.length,
gen = opt && opt.get || getter,
map = f => gen(flat ? [f] : splitAccessPath(f));
let fn;
if (!len) {
fn = function () {
return '';
};
} else if (len === 1) {
const get = map(fields[0]);
fn = function (_) {
return '' + get(_);
};
} else {
const get = fields.map(map);
fn = function (_) {
let s = '' + get[0](_),
i = 0;
while (++i < len) s += '|' + get[i](_);
return s;
};
}
return accessor(fn, fields, 'key');
}
function lerp (array, frac) {
const lo = array[0],
hi = peek(array),
f = +frac;
return !f ? lo : f === 1 ? hi : lo + f * (hi - lo);
}
const DEFAULT_MAX_SIZE = 10000;
// adapted from https://github.com/dominictarr/hashlru/ (MIT License)
function lruCache (maxsize) {
maxsize = +maxsize || DEFAULT_MAX_SIZE;
let curr, prev, size;
const clear = () => {
curr = {};
prev = {};
size = 0;
};
const update = (key, value) => {
if (++size > maxsize) {
prev = curr;
curr = {};
size = 1;
}
return curr[key] = value;
};
clear();
return {
clear,
has: key => has(curr, key) || has(prev, key),
get: key => has(curr, key) ? curr[key] : has(prev, key) ? update(key, prev[key]) : undefined,
set: (key, value) => has(curr, key) ? curr[key] = value : update(key, value)
};
}
function merge (compare, array0, array1, output) {
const n0 = array0.length,
n1 = array1.length;
if (!n1) return array0;
if (!n0) return array1;
const merged = output || new array0.constructor(n0 + n1);
let i0 = 0,
i1 = 0,
i = 0;
for (; i0 < n0 && i1 < n1; ++i) {
merged[i] = compare(array0[i0], array1[i1]) > 0 ? array1[i1++] : array0[i0++];
}
for (; i0 < n0; ++i0, ++i) {
merged[i] = array0[i0];
}
for (; i1 < n1; ++i1, ++i) {
merged[i] = array1[i1];
}
return merged;
}
function repeat (str, reps) {
let s = '';
while (--reps >= 0) s += str;
return s;
}
function pad (str, length, padchar, align) {
const c = padchar || ' ',
s = str + '',
n = length - s.length;
return n <= 0 ? s : align === 'left' ? repeat(c, n) + s : align === 'center' ? repeat(c, ~~(n / 2)) + s + repeat(c, Math.ceil(n / 2)) : s + repeat(c, n);
}
/**
* Return the numerical span of an array: the difference between
* the last and first values.
*/
function span (array) {
return array && peek(array) - array[0] || 0;
}
function $(x) {
return isArray(x) ? '[' + x.map($) + ']' : isObject(x) || isString(x) ?
// Output valid JSON and JS source strings.
// See http://timelessrepo.com/json-isnt-a-javascript-subset
JSON.stringify(x).replace('\u2028', '\\u2028').replace('\u2029', '\\u2029') : x;
}
function toBoolean (_) {
return _ == null || _ === '' ? null : !_ || _ === 'false' || _ === '0' ? false : !!_;
}
const defaultParser = _ => isNumber(_) ? _ : isDate(_) ? _ : Date.parse(_);
function toDate (_, parser) {
parser = parser || defaultParser;
return _ == null || _ === '' ? null : parser(_);
}
function toString (_) {
return _ == null || _ === '' ? null : _ + '';
}
function toSet (_) {
const s = {},
n = _.length;
for (let i = 0; i < n; ++i) s[_[i]] = true;
return s;
}
function truncate (str, length, align, ellipsis) {
const e = ellipsis != null ? ellipsis : '\u2026',
s = str + '',
n = s.length,
l = Math.max(0, length - e.length);
return n <= length ? s : align === 'left' ? e + s.slice(n - l) : align === 'center' ? s.slice(0, Math.ceil(l / 2)) + e + s.slice(n - ~~(l / 2)) : s.slice(0, l) + e;
}
function visitArray (array, filter, visitor) {
if (array) {
if (filter) {
const n = array.length;
for (let i = 0; i < n; ++i) {
const t = filter(array[i]);
if (t) visitor(t, i, array);
}
} else {
array.forEach(visitor);
}
}
}
exports.Debug = Debug;
exports.Error = Error$1;
exports.Info = Info;
exports.None = None;
exports.Warn = Warn;
exports.accessor = accessor;
exports.accessorFields = accessorFields;
exports.accessorName = accessorName;
exports.array = array;
exports.ascending = ascending;
exports.clampRange = clampRange;
exports.compare = compare;
exports.constant = constant;
exports.debounce = debounce;
exports.error = error;
exports.extend = extend;
exports.extent = extent;
exports.extentIndex = extentIndex;
exports.falsy = falsy;
exports.fastmap = fastmap;
exports.field = field;
exports.flush = flush;
exports.hasOwnProperty = has;
exports.id = id;
exports.identity = identity;
exports.inherits = inherits;
exports.inrange = inrange;
exports.isArray = isArray;
exports.isBoolean = isBoolean;
exports.isDate = isDate;
exports.isFunction = isFunction;
exports.isIterable = isIterable;
exports.isNumber = isNumber;
exports.isObject = isObject;
exports.isRegExp = isRegExp;
exports.isString = isString;
exports.key = key;
exports.lerp = lerp;
exports.logger = logger;
exports.lruCache = lruCache;
exports.merge = merge;
exports.mergeConfig = mergeConfig;
exports.one = one;
exports.pad = pad;
exports.panLinear = panLinear;
exports.panLog = panLog;
exports.panPow = panPow;
exports.panSymlog = panSymlog;
exports.peek = peek;
exports.quarter = quarter;
exports.repeat = repeat;
exports.span = span;
exports.splitAccessPath = splitAccessPath;
exports.stringValue = $;
exports.toBoolean = toBoolean;
exports.toDate = toDate;
exports.toNumber = toNumber;
exports.toSet = toSet;
exports.toString = toString;
exports.truncate = truncate;
exports.truthy = truthy;
exports.utcquarter = utcquarter;
exports.visitArray = visitArray;
exports.writeConfig = writeConfig;
exports.zero = zero;
exports.zoomLinear = zoomLinear;
exports.zoomLog = zoomLog;
exports.zoomPow = zoomPow;
exports.zoomSymlog = zoomSymlog;
}));
/* */}),null);
-----
WitHelpers",["Random","ReactDOM_DEPRECATED","ReactRouter-2.0.0","WitHelpersShared","WitLog","WitModal.react","WitUnderscore","immutable","intersperse","jquery","react"],(function(a,b,c,d,e,f){var g;a=b("WitHelpersShared").debounce;c=b("WitHelpersShared").str;var h=g||(g=b("react")),i=b("immutable").List,j=b("immutable").Set,k=b("immutable").Iterable,l=b("ReactRouter-2.0.0").Link,m=b("WitModal.react").ConfirmModal;d=function(a){"use strict";babelHelpers.inheritsLoose(b,a);function b(){return a.apply(this,arguments)||this}var c=b.prototype;c.render=function(){var a=this.props,b=a.children;a=babelHelpers.objectWithoutPropertiesLoose(a,["children"]);return h.jsx(l,babelHelpers["extends"]({activeClassName:"active"},a,{children:b}))};return b}(h.Component);var n=["webkit","ms","moz","Moz","o","O"];f=function(a,b){b=b.charAt(0).toUpperCase()+b.slice(1);for(var c=0;c Received message",e);if(a.origin&&e.origin!==a.origin){b("WitLog")("> Different origin",e.origin);return}window.removeEventListener("message",d,!1);return a.cb(e.data,c)};b("WitLog")("> Listening for message");window.addEventListener("message",g,!1);c=window.open(a.url,a.title,e);a.under&&c.opener.window.focus();return c},blank:function(a){return!a||!b("WitUnderscore")(a).size()},pretty_date:function(a){if(!a)return;a=new Date(a);return a.toLocaleDateString()+" "+a.toLocaleTimeString()},human_date:function(a){if(!a)return;var b=new Date();b=b.getTime()-a.getTime();b=Math.round(b/1e3);if(b<60)return"a few seconds ago";b=Math.round(b/60);if(b<60)return b+" minutes ago";b=Math.round(b/60);if(b<24)return b+" hours ago";b=Math.round(b/24);if(b<31)return b+" days ago";b=Math.round(b/31);if(b<12)return b+" months ago";b=Math.round(b/12);return b+" years ago"},browser:function(){var a=navigator.userAgent.toLowerCase();a=/(chrome)[ /]([w.]+)/.exec(a)||/(webkit)[ /]([w.]+)/.exec(a)||/(opera)(?:.*version|)[ /]([w.]+)/.exec(a)||/(msie) ([w.]+)/.exec(a)||a.indexOf("compatible")<0&&/(mozilla)(?:.*? rv:([w.]+)|)/.exec(a)||[];var b=a[1]||"";a=a[2]||"0";var c={};b&&(c[b]=!0,c.version=a);c.chrome?c.webkit=!0:c.webkit&&(c.safari=!0);c.supported=c.webkit||c.mozilla;return c},confirm:function(a,c,d){var e=b("jquery")("
-----
WitHelpers",["Random","ReactDOM_DEPRECATED","ReactRouter-2.0.0","WitHelpersShared","WitLog","WitModal.react","WitUnderscore","immutable","intersperse","jquery","react"],(function(a,b,c,d,e,f){var g;a=b("WitHelpersShared").debounce;c=b("WitHelpersShared").str;var h=g||(g=b("react")),i=b("immutable").List,j=b("immutable").Set,k=b("immutable").Iterable,l=b("ReactRouter-2.0.0").Link,m=b("WitModal.react").ConfirmModal;d=function(a){"use strict";babelHelpers.inheritsLoose(b,a);function b(){return a.apply(this,arguments)||this}var c=b.prototype;c.render=function(){var a=this.props,b=a.children;a=babelHelpers.objectWithoutPropertiesLoose(a,["children"]);return h.jsx(l,babelHelpers["extends"]({activeClassName:"active"},a,{children:b}))};return b}(h.Component);var n=["webkit","ms","moz","Moz","o","O"];f=function(a,b){b=b.charAt(0).toUpperCase()+b.slice(1);for(var c=0;c
")[0];b("jquery")("body").append(e);a={msg:a,onOk:c,onCancel:d,onHide:function(){b("ReactDOM_DEPRECATED").unmountComponentAtNode_DEPRECATED(e);return b("jquery")(e).remove()}};return b("ReactDOM_DEPRECATED").render_DEPRECATED(h.jsx(m,babelHelpers["extends"]({},a)),e)},regex_escape:function(a){return a.trim().replace(/([.?*+^$[]\(){}|-])/g,"\$1")},is_valid_email:function(a){return/[^@]+@[^.]+..+/.test(a)},easy_plural:function(a,b){Array.isArray(b)&&(b=b.length);if(b>1||b===0)return a+"s";else return a},intersperse:b("intersperse"),filterFalsy:function(a,b){var c=j(b);return a.filterNot(function(a,b){return c.has(b)&&!a})},safeCall:function(a){if(a){for(var b=arguments.length,c=new Array(b>1?b-1:0),d=1;d1?c-1:0),e=1;e3?e-3:0),g=3;g1?b-1:0),d=1;d-----
PubXPerf.react",["LoadingMarkerArea.react","PubXComponentPerformance","immutable","react"],(function(a,b,c,d,e,f,g){"use strict";var h,i=h||d("react");a=function(a){babelHelpers.inheritsLoose(b,a);function b(){return a.apply(this,arguments)||this}var e=b.prototype;e.componentWillUnmount=function(){this.$1&&d("PubXComponentPerformance").componentLoadCancel(this,this.props.name)};e.render=function(){var a=Array.isArray(this.props.state)?this.props.state.every(j):j(this.props.state);a?this.$1&&(this.$1=!1,this.$2=!0,d("PubXComponentPerformance").componentLoaded(this,this.props.name)):!this.$2&&!this.$1&&(this.$1=!0,d("PubXComponentPerformance").componentLoading(this,this.props.name));return i.jsx(c("LoadingMarkerArea.react"),{name:this.props.name,owner:"publisher_experience",children:this.props.children})};return b}(i.Component);var j=function a(b){if(b===null)return!0;if(k(b)){var d=b;return!d.isDone()?!1:d.hasValue()?a(d.getValueEnforcing()):!0}if(Array.isArray(b)){if(b.length===0)return!0;d=b;return k(b[0])?d.every(function(a){return a.isDone()}):d.every(a)}if(c("immutable").Iterable.isIterable(b)){d=b.valueSeq();var e=d.first();return k(e)?d.every(function(a){return a.isDone()}):d.every(a)}return Object.values(b).every(function(a){return k(a)?a.isDone():!0})},k=function(a){return a!=null&&a.internalHasValue!=null};b=d("PubXComponentPerformance").createComponent(a);g["default"]=b}),98);
-----
CubitorThreeXR",["CubitorSkyDomeMaterial","CubitorUtils","CubitorXRConstants","CubitorXRGizmoManager","CubitorXRGrabAction","CubitorXRManager","CubitorXRMeshHighLighter","CubitorXRSlideLocomotion","GLTFLoader.three.r137","OrbitControls.three.r137","VRButton.three.r137","asyncToGeneratorRuntime","three-obj-loader","three.r137"],(function(a,b,c,d,e,f,g){"use strict";function h(a){return a*.0174533}a=function(){function a(a){this.$7=new(c("three.r137").Group)(),this.$13=new(c("three.r137").Raycaster)(),this.$1=a.mapCenter,this.$5=a.canvasId,this.$6=a.meshes,this.$2=a.viewport,this.$4=new Map(),this.$19=a.showTerrain}var e=a.prototype;e.setPositioning=function(a,b){var e=this.$2.project([b.getLocation()[0],b.getLocation()[1],this.$2.zoom]),f=b.getScale();a.position.set(e[0]-d("CubitorXRConstants").WIDTH/2,b.getElevation(),e[1]-d("CubitorXRConstants").HEIGHT/2);a.scale.set(f,f,f);f=new((e=c("three.r137")).Quaternion)();a.setRotationFromQuaternion(f);a.rotateOnWorldAxis(new e.Vector3(1,0,0),h(b.getPitch()-90));a.rotateOnWorldAxis(new e.Vector3(0,1,0),h(b.getYaw()));a.rotateOnWorldAxis(new e.Vector3(0,0,1),h(360-b.getRoll()))};e.loadGlb=function(a){var b=this,d=new(c("GLTFLoader.three.r137"))();d.load(a.getGlbUrl(),function(c){b.$8.add(c.scene),b.setPositioning(c.scene,a)})};e.applyTextureToObj=function(a,b){if(a.getTextureUrl()&&a.getTextureUrl().length>0){var d=new(c("three.r137").TextureLoader)().load(a.getTextureUrl());b.traverse(function(a){a instanceof c("three.r137").Mesh&&(a.material.map=d)})}else{var e=new(c("three.r137").MeshPhongMaterial)({color:a.getColor(),side:c("three.r137").DoubleSide,shading:c("three.r137").SmoothShading,shininess:30});b.traverse(function(a){a instanceof c("three.r137").Mesh&&(a.material=e)})}};e.setTextureAndPosition=function(a,b){this.applyTextureToObj(a,b),this.$8.add(b),this.setPositioning(b,a)};e.loadObj=function(a){var b=this,d=new(c("three.r137").OBJLoader)(),e;a.getObjUrl()===""?(e=d.parse(a.getData()),this.setTextureAndPosition(a,e)):d.load(a.getObjUrl(),function(c){b.setTextureAndPosition(a,c)})};e.createSkyBox=function(){var a=c("CubitorSkyDomeMaterial")();a.props.diskLongitude=d("CubitorXRConstants").SUN_LON;a.props.diskLatitude=d("CubitorXRConstants").SUN_LAT;a.props.update();a=new(c("three.r137").Mesh)(new(c("three.r137").SphereGeometry)(1e3,32,16),a);a.name="skyBox";this.$8.add(a)};e.addLighting=function(){var a=new(c("three.r137").AmbientLight)(d("CubitorXRConstants").SOFT_LIGHT,2);this.$8.add(a);a=d("CubitorUtils").vec3_fromPolar(d("CubitorXRConstants").SUN_LON,d("CubitorXRConstants").SUN_LAT);var b=new(c("three.r137").DirectionalLight)(16777215,1);b.position.fromArray(a);b.castShadow=!0;this.$8.add(b)};e.init=function(){var a=this,b,e=document.getElementById(this.$5);c("three-obj-loader")(b=c("three.r137"));this.$8=new b.Scene();this.$6.forEach(function(b){return b.getGlbUrl().length>0?a.loadGlb(b):a.loadObj(b)});this.$8.add(this.$7);this.createSkyBox();this.addLighting();this.$3=new b.PerspectiveCamera(45,window.innerWidth/window.innerHeight,.1,2e3);this.$12=new b.Clock();this.$9=new b.Group();this.$9.position.set(0,0,0);this.$9.add(this.$3);this.$8.add(this.$9);this.$3.position.x=d("CubitorXRConstants").CAMERA_POSITION[0];this.$3.position.y=d("CubitorXRConstants").CAMERA_POSITION[1];this.$3.position.z=d("CubitorXRConstants").CAMERA_POSITION[2];this.$11=new b.WebGLRenderer({canvas:e,context:e.getContext("webgl2"),antialias:!0,alpha:!0});this.$10=new(d("OrbitControls.three.r137").OrbitControls)(this.$3,this.$11.domElement);this.$11.setPixelRatio(window.devicePixelRatio);this.$11.xr.enabled=!0;this.$11.xr.setFramebufferScaleFactor(2);this.$11.xr.setReferenceSpaceType("local");(b=document.body)==null?void 0:b.appendChild(c("VRButton.three.r137").createButton(this.$11));window.addEventListener("resize",function(b){return a.onResize()});this.onResize();this.$14=new(d("CubitorXRManager").XRManager)(this.$11,this.$8,this.$3);this.$14.setRoomContainer(this.$9);this.$14.onXRStart=function(){a.$9.position.y=2};this.$15=new(c("CubitorXRSlideLocomotion"))();this.$15.setTargetObject(this.$9);this.$16=new(c("CubitorXRMeshHighLighter"))();this.$16.startMouseHandling(this.$11,this.$3,this.$7.children);this.$17=new(c("CubitorXRGizmoManager"))(this.$8,this.$11,this.$3,this.$10);this.$11.domElement.addEventListener("pointerdown",function(b){a.checkIfSelectingObject(a.getPointerRayCaster(b))})};e.animate=function(){var a=this;this.$12.start();this.$11.setAnimationLoop(function(b,e){if(a.$14.update(e)){b=a.$14.getController("right");e=a.$7.children;var f=a.$12.getDelta();a.$15.update(f,a.$14);if(a.$19){var g=a.$9.position.x,h=a.$9.position.z;g=a.$18.getHeightAt(g,h)+d("CubitorXRConstants").XR_MIN_HEIGHT;a.$15.updateUp(f,g)}a.$14.updatesFromCamera();a.$17.isInUse()||a.$16.update(a.$14,e);if(b){h=b.getRayCaster();f=b.isButtonUpThisFrame("trigger");g=b.isButtonDownThisFrame("trigger");c("CubitorXRGrabAction").update(b,e);a.$17.isVisible()&&(a.$17.isInUse()?a.$17.casterMove(h):a.$17.casterHover(h));if(g){b=!1;a.$17.isVisible()&&(b=a.$17.casterDown(h));b||a.checkIfSelectingObject(h)}else f&&(a.$17.isInUse()&&a.$17.casterUp())}}a.$11.render(a.$8,a.$3)})};e.getScene=function(){return this.$8};e.getSelectedableGroup=function(){return this.$7};e.isIterable=function(a){return a==null?!1:typeof a[typeof Symbol==="function"?Symbol.iterator:"@@iterator"]==="function"};e.getPointerRayCaster=function(a,b){var d=this.$11.domElement.getBoundingClientRect(),e=a.clientX-d.left;a=a.clientY-d.top;e=new(c("three.r137").Vector2)(e/d.width*2-1,-(a/d.height)*2+1);a=b||this.$13;a.setFromCamera(e,this.$3);return a};e.checkIfSelectingObject=function(a){a=a.intersectObjects(this.$7.children,!0);if(a.length>0){this.$17.attach(a[0].object);return a[0].object}else this.$17.isVisible()&&!this.$17.isInUse()&&this.$17.detach();return null};e.onResize=function(){var a=this.$11.domElement.parentNode;a=a.getBoundingClientRect();this.$11.setSize(a.width,a.height);this.$3.aspect=a.width/a.height;this.$3.updateProjectionMatrix()};e.setTileManager=function(a){this.$18=a};e.updatePositionsFromHeightMap=function(){var a=b("asyncToGeneratorRuntime").asyncToGenerator(function*(){var a=d("CubitorXRConstants").TERRAIN_TO_CAMERA_MIN_HEIGHT+this.$18.getHeightAt(0,0);this.$10.target.y+=a;this.$3.position.y+=a;var b=this.$8.getObjectByName("skyBox");b&&(b.position.y+=a)});function c(){return a.apply(this,arguments)}return c}();return a}();g["default"]=a}),98);
-----
loaders-gl-core-1.3.5",["babel-runtime-7.4.3"],(function(a,b,c,d,e,f){"use strict";function c(a){return a&&typeof a==="object"&&"default"in a?a["default"]:a}var g=c(b("babel-runtime-7.4.3")),h={},i={exports:h};function j(){Object.defineProperty(h,"__esModule",{value:!0});h["default"]=a;function a(a,b){if(!a)throw new Error(b||"loader assertion failed.")}}var k=!1;function l(){k||(k=!0,j());return i.exports}var m={},n={exports:m};function o(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(m,"__esModule",{value:!0});m.isLoaderObject=f;m.normalizeLoader=h;var b=a(g("/helpers/defineProperty")),c=a(l());function d(a,b){var c=Object.keys(a);if(Object.getOwnPropertySymbols){var d=Object.getOwnPropertySymbols(a);b&&(d=d.filter(function(b){return Object.getOwnPropertyDescriptor(a,b).enumerable}));c.push.apply(c,d)}return c}function e(a){for(var c=1;c0&&a.extensions[0]);a.parseTextSync&&(a.text=!0);a.text||(a.binary=!0);return a}}var p=!1;function q(){p||(p=!0,o());return n.exports}var r={},s={exports:r};function t(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(r,"__esModule",{value:!0});r["default"]=void 0;var b=a(g("/helpers/classCallCheck")),c=a(g("/helpers/createClass"));a=function(){function a(){b["default"](this,a)}c["default"](a,[{key:"log",value:function(){}},{key:"info",value:function(){}},{key:"warn",value:function(){}},{key:"error",value:function(){}}]);return a}();r["default"]=a}var u=!1;function v(){u||(u=!0,t());return s.exports}var w={},aa={exports:w};function x(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(w,"__esModule",{value:!0});w.mergeLoaderAndUserOptions=c;var b=a(v());function c(a,c){a=Object.assign({},c&&c.DEFAULT_OPTIONS,c&&c.defaultOptions,c&&c.options,a,{dataType:"arraybuffer"});a.log===null&&(a.log=new b["default"]());"log"in a||(a.log=console);return a}}var y=!1;function z(){y||(y=!0,x());return aa.exports}var A={},ba={exports:A};function ca(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(A,"__esModule",{value:!0});A.isWritableStream=A.isReadableStream=A.isReadableNodeStream=A.isWritableNodeStream=A.isReadableDOMStream=A.isWritableDOMStream=A.isFileReadable=A.isBlob=A.isFile=A.isFetchResponse=A.isIterator=A.isAsyncIterable=A.isIterable=A.isPromise=void 0;var b=a(g("/helpers/typeof")),c=function(a){return typeof a==="boolean"},d=function(a){return typeof a==="function"},e=function(a){return a!==null&&b["default"](a)==="object"};a=function(a){return e(a)&&d(a.then)};A.isPromise=a;a=function(a){return a&&typeof a[Symbol.iterator]==="function"};A.isIterable=a;a=function(a){return a&&typeof a[Symbol.asyncIterator]==="function"};A.isAsyncIterable=a;a=function(a){return a&&d(a.next)};A.isIterator=a;a=function(a){return typeof Response!=="undefined"&&a instanceof Response||a.arrayBuffer&&a.text&&a.json};A.isFetchResponse=a;var f=function(a){return typeof File!=="undefined"&&a instanceof File};A.isFile=f;var h=function(a){return typeof Blob!=="undefined"&&a instanceof Blob};A.isBlob=h;a=function(a){return f(a)||h(a)};A.isFileReadable=a;var i=function(a){return e(a)&&d(a.abort)&&d(a.getWriter)};A.isWritableDOMStream=i;var j=function(a){return e(a)&&d(a.tee)&&d(a.cancel)&&d(a.pipeTo)&&d(a.getReader)};A.isReadableDOMStream=j;var k=function(a){return e(a)&&d(a.end)&&d(a.write)&&c(a.writable)};A.isWritableNodeStream=k;var l=function(a){return e(a)&&d(a.read)&&d(a.pipe)&&c(a.readable)};A.isReadableNodeStream=l;a=function(a){return j(a)||l(a)};A.isReadableStream=a;a=function(a){return i(a)||k(a)};A.isWritableStream=a}var B=!1;function C(){B||(B=!0,ca());return ba.exports}var D={},E={exports:D};function F(){var b=g("/helpers/interopRequireDefault");Object.defineProperty(D,"__esModule",{value:!0});D.nodeVersion=D.document=D.global=D.window=D.self=D.isBrowser=void 0;b=b(g("/helpers/typeof"));b=(typeof process==="undefined"?"undefined":b["default"](process))!=="object"||String(process)!=="[object process]"||process.browser;D.isBrowser=b;b={self:typeof self!=="undefined"&&self,window:typeof window!=="undefined"&&window,global:typeof a!=="undefined"&&a,document:typeof document!=="undefined"&&document};var c=b.self||b.window||b.global;D.self=c;c=b.window||b.self||b.global;D.window=c;c=b.global||b.self||b.window;D.global=c;c=b.document||{};D.document=c;b=typeof process!=="undefined"&&process.version&&process.version.match(/v([0-9]*)/);c=b&&parseFloat(b[1])||0;D.nodeVersion=c}var G=!1;function H(){G||(G=!0,F());return E.exports}var I={},da={exports:I};function ea(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(I,"__esModule",{value:!0});I.getStreamIterator=h;var b=a(g("/helpers/asyncToGenerator")),c=a(g("/regenerator")),d=a(g("/helpers/awaitAsyncGenerator")),e=a(g("/helpers/wrapAsyncGenerator")),f=H();function h(a){if(f.isBrowser||f.nodeVersion>=10){if(typeof a[Symbol.asyncIterator]==="function")return a;if(typeof a.getIterator==="function")return a.getIterator()}return f.isBrowser?i(a):k(a)}function i(a){return j.apply(this,arguments)}function j(){j=e["default"](c["default"].mark(function a(b){var e,f,g,h;return c["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:e=b.getReader(),a.prev=1;case 2:a.next=5;return d["default"](e.read());case 5:f=a.sent;g=f.done;h=f.value;if(!g){a.next=10;break}return a.abrupt("return");case 10:a.next=12;return h;case 12:a.next=2;break;case 14:a.next=19;break;case 16:a.prev=16,a.t0=a["catch"](1),e.releaseLock();case 19:case"end":return a.stop()}},a,null,[[1,16]])}));return j.apply(this,arguments)}function k(a){return l.apply(this,arguments)}function l(){l=e["default"](c["default"].mark(function a(b){var e;return c["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:a.next=2;return d["default"](b);case 2:b=a.sent;case 3:e=b.read();if(!(e!==null)){a.next=9;break}a.next=8;return e;case 8:return a.abrupt("continue",3);case 9:if(!b._readableState.ended){a.next=11;break}return a.abrupt("return");case 11:a.next=13;return d["default"](m(b));case 13:a.next=3;break;case 15:case"end":return a.stop()}},a)}));return l.apply(this,arguments)}function m(a){return n.apply(this,arguments)}function n(){n=b["default"](c["default"].mark(function a(b){return c["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:return a.abrupt("return",new Promise(function(a){b.once("readable",a)}));case 1:case"end":return a.stop()}},a)}));return n.apply(this,arguments)}}var fa=!1;function ga(){fa||(fa=!0,ea());return da.exports}var ha={},ia={exports:ha};function ja(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(ha,"__esModule",{value:!0});ha["default"]=i;var b=a(g("/regenerator")),c=a(g("/helpers/asyncToGenerator")),d=a(g("/helpers/classCallCheck")),e=a(g("/helpers/createClass")),f=a(l()),h=function(){function a(b){d["default"](this,a),this._fileOrBlob=b,this.bodyUsed=!1}e["default"](a,[{key:"url",value:function(){return this._fileOrBlob.name||""}},{key:"arrayBuffer",value:function(){var a=c["default"](b["default"].mark(function a(){var c,d,e;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:c=this._getFileReader(),d=c.reader,e=c.promise;d.readAsArrayBuffer(this._fileOrBlob);return a.abrupt("return",e);case 3:case"end":return a.stop()}},a,this)}));function d(){return a.apply(this,arguments)}return d}()},{key:"text",value:function(){var a=c["default"](b["default"].mark(function a(){var c,d,e;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:c=this._getFileReader(),d=c.reader,e=c.promise;d.readAsText(this._fileOrBlob);return a.abrupt("return",e);case 3:case"end":return a.stop()}},a,this)}));function d(){return a.apply(this,arguments)}return d}()},{key:"json",value:function(){var a=c["default"](b["default"].mark(function a(){var c;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:a.next=2;return this.text();case 2:c=a.sent;return a.abrupt("return",JSON.parse(c));case 4:case"end":return a.stop()}},a,this)}));function d(){return a.apply(this,arguments)}return d}()},{key:"_getFileReader",value:function(){f["default"](!this.bodyUsed);this.bodyUsed=!0;var a,b=new Promise(function(b,c){try{a=new FileReader(),a.onerror=function(a){return c(new Error(a))},a.onabort=function(){return c(new Error("Read aborted."))},a.onload=function(){return b(a.result)}}catch(a){c(a)}});return{reader:a,promise:b}}},{key:"headers",get:function(){return new Headers({"Content-Length":this._fileOrBlob.size,"Content-Type":this._fileOrBlob.type})}},{key:"ok",get:function(){return!0}},{key:"status",get:function(){return 200}}]);return a}();function i(a,b){return Promise.resolve(new h(a,b))}}var ka=!1;function la(){ka||(ka=!0,ja());return ia.exports}var J={},ma={exports:J};function na(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(J,"__esModule",{value:!0});J.checkFetchResponseStatus=d;J.checkFetchResponseStatusSync=f;var b=a(g("/regenerator")),c=a(g("/helpers/asyncToGenerator"));function d(a){return e.apply(this,arguments)}function e(){e=c["default"](b["default"].mark(function a(c){var d,e;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:if(c.ok){a.next=12;break}d="fetch failed ".concat(c.status," ");a.prev=2;a.next=5;return c.text();case 5:e=a.sent;d+=e;a.next=11;break;case 9:a.prev=9,a.t0=a["catch"](2);case 11:throw new Error(d);case 12:case"end":return a.stop()}},a,null,[[2,9]])}));return e.apply(this,arguments)}function f(a){if(!a.ok)throw new Error("fetch failed ".concat(a.status))}}var oa=!1;function pa(){oa||(oa=!0,na());return ma.exports}var K={},qa={exports:K};function ra(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(K,"__esModule",{value:!0});K.getUrlFromData=j;K.getArrayBufferOrStringFromDataSync=k;K.getArrayBufferOrStringFromData=l;K.getAsyncIteratorFromData=n;K.getIteratorFromData=o;var b=a(g("/regenerator")),c=a(g("/helpers/asyncToGenerator")),d=C(),e=ga(),f=a(la()),h=pa(),i="Cannot convert supplied data type";function j(a,b){d.isFetchResponse(a)?b=b||a.url:d.isFileReadable(b)&&(b=b.name);return typeof b==="string"?b.replace(/?.*/,""):b}function k(a,b){if(b.text&&typeof a==="string")return a;if(a instanceof ArrayBuffer||ArrayBuffer.isView(a)){a=a.buffer||a;if(b.text&&!b.binary){b=new TextDecoder("utf8");return b.decode(a)}return a}throw new Error(i)}function l(a,b){return m.apply(this,arguments)}function m(){m=c["default"](b["default"].mark(function a(c,e){var g;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:a.next=2;return c;case 2:c=a.sent;g=c instanceof ArrayBuffer||ArrayBuffer.isView(c);if(!(typeof c==="string"||g)){a.next=6;break}return a.abrupt("return",k(c,e));case 6:if(!d.isFileReadable(c)){a.next=10;break}a.next=9;return f["default"](c);case 9:c=a.sent;case 10:if(!d.isFetchResponse(c)){a.next=23;break}a.next=13;return h.checkFetchResponseStatus(c);case 13:if(!e.binary){a.next=19;break}a.next=16;return c.arrayBuffer();case 16:a.t0=a.sent;a.next=22;break;case 19:a.next=21;return c.text();case 21:a.t0=a.sent;case 22:return a.abrupt("return",a.t0);case 23:throw new Error(i);case 24:case"end":return a.stop()}},a)}));return m.apply(this,arguments)}function n(a){if(d.isIterator(a))return a;if(d.isFetchResponse(a)&&a.body){h.checkFetchResponseStatusSync(a);return e.getStreamIterator(a.body)}if(d.isReadableStream(a))return e.getStreamIterator(a);return d.isAsyncIterable(a)?a[Symbol.asyncIterator]():o(a)}function o(a){if(a instanceof ArrayBuffer||ArrayBuffer.isView(a))return b["default"].mark(function c(){return b["default"].wrap(function(b){while(1)switch(b.prev=b.next){case 0:b.next=2;return a.buffer||a;case 2:case"end":return b.stop()}},c)})();if(d.isIterator(a))return a;if(d.isIterable(a))return a[Symbol.iterator]();throw new Error(i)}}var sa=!1;function L(){sa||(sa=!0,ra());return qa.exports}var ta={},ua={exports:ta};function va(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(ta,"__esModule",{value:!0});ta.getLoaderContext=e;var b=a(g("/helpers/defineProperty"));function c(a,b){var c=Object.keys(a);if(Object.getOwnPropertySymbols){var d=Object.getOwnPropertySymbols(a);b&&(d=d.filter(function(b){return Object.getOwnPropertyDescriptor(a,b).enumerable}));c.push.apply(c,d)}return c}function d(a){for(var d=1;d1&&arguments[1]!==void 0?arguments[1]:!0,e=arguments.length>2&&arguments[2]!==void 0?arguments[2]:[];if(!!a)if(a instanceof ArrayBuffer)e.push(a);else if(a.buffer&&a.buffer instanceof ArrayBuffer)e.push(a.buffer);else if(c&&b["default"](a)==="object")for(var f in a)d(a[f],c,e);return e}var e=new Map();function f(a){c["default"](typeof a==="string","worker source");if(a.startsWith("url(")&&a.endsWith(")"))return a.match(/^url((.*))$/)[1];var b=e.get(a);if(!b){var d=new Blob([a],{type:"application/javascript"});b=URL.createObjectURL(d);e.set(a,b)}return b}}var Ja=!1;function Ka(){Ja||(Ja=!0,Ia());return Ha.exports}var O={},La={exports:O};function Ma(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(O,"__esModule",{value:!0});O["default"]=void 0;var b=a(g("/regenerator")),c=a(g("/helpers/asyncToGenerator")),d=a(g("/helpers/classCallCheck")),e=a(g("/helpers/createClass")),f=Ka(),h=0;function i(a){var b=a.data;a=a.resolve;a(b)}a=function(){function a(b){var c=b.source,e=b.name;e=e===void 0?"web-worker-".concat(h++):e;b=b.onMessage;d["default"](this,a);c=f.getWorkerURL(c);this.worker=new Worker(c,{name:e});this.name=e;this.onMessage=b||i}e["default"](a,[{key:"process",value:function(){var a=c["default"](b["default"].mark(function a(c){var d=this;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:return a.abrupt("return",new Promise(function(a,b){d.worker.onmessage=function(c){return d.onMessage({worker:d.worker,data:c.data,resolve:a,reject:b})};d.worker.onerror=function(a){return b(a)};var e=f.getTransferList(c);d.worker.postMessage(c,e)}));case 1:case"end":return a.stop()}},a)}));function d(b){return a.apply(this,arguments)}return d}()},{key:"destroy",value:function(){this.worker.terminate(),this.worker=null}}]);return a}();O["default"]=a}var Na=!1;function Oa(){Na||(Na=!0,Ma());return La.exports}var P={},Pa={exports:P};function Qa(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(P,"__esModule",{value:!0});P["default"]=void 0;var b=a(g("/regenerator")),c=a(g("/helpers/asyncToGenerator")),d=a(g("/helpers/classCallCheck")),e=a(g("/helpers/createClass")),f=a(Oa());a=function(){function a(b){var c=b.source,e=b.name;e=e===void 0?"unnamed":e;var f=b.maxConcurrency;f=f===void 0?1:f;var g=b.onMessage;b=b.onDebug;b=b===void 0?function(){}:b;d["default"](this,a);this.source=c;this.name=e;this.maxConcurrency=f;this.onMessage=g;this.onDebug=b;this.jobQueue=[];this.idleQueue=[];this.count=0;this.isDestroyed=!1}e["default"](a,[{key:"destroy",value:function(){this.idleQueue.forEach(function(a){return a.destroy()}),this.isDestroyed=!0}},{key:"process",value:function(){var a=c["default"](b["default"].mark(function a(c,d){var e=this;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:return a.abrupt("return",new Promise(function(a,b){e.jobQueue.push({data:c,jobName:d,resolve:a,reject:b}),e._startQueuedJob()}));case 1:case"end":return a.stop()}},a)}));function d(b,c){return a.apply(this,arguments)}return d}()},{key:"_startQueuedJob",value:function(){var a=this;if(!this.jobQueue.length)return;var b=this._getAvailableWorker();if(!b)return;var c=this.jobQueue.shift();this.onDebug({message:"processing",worker:b.name,job:c.jobName,backlog:this.jobQueue.length});b.process(c.data).then(function(a){return c.resolve(a)})["catch"](function(a){return c.reject(a)}).then(function(){return a._onWorkerDone(b)})}},{key:"_onWorkerDone",value:function(a){this.isDestroyed?a.destroy():(this.idleQueue.push(a),this._startQueuedJob())}},{key:"_getAvailableWorker",value:function(){if(this.idleQueue.length>0)return this.idleQueue.shift();if(this.count0&&arguments[0]!==void 0?arguments[0]:{},b={};a.maxConcurrency&&(b.maxConcurrency=a.maxConcurrency);a.onDebug&&(b.onDebug=a.onDebug);i||(i=new e["default"]({onMessage:k}));i.setProps(b);return i}function k(a){return l.apply(this,arguments)}function l(){l=c["default"](b["default"].mark(function a(c){var d,e,g,i,j;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:d=c.worker,e=c.data,g=c.resolve,i=c.reject;a.t0=e.type;a.next=a.t0==="done"?4:a.t0==="process"?6:a.t0==="error"?17:19;break;case 4:g(e.result);return a.abrupt("break",19);case 6:a.prev=6;a.next=9;return f.parse(e.arraybuffer,e.options,e.url);case 9:j=a.sent;d.postMessage({type:"process-done",id:e.id,result:j},h.getTransferList(j));a.next=16;break;case 13:a.prev=13,a.t1=a["catch"](6),d.postMessage({type:"process-error",id:e.id,message:a.t1.message});case 16:return a.abrupt("break",19);case 17:i(e.message);return a.abrupt("break",19);case 19:case"end":return a.stop()}},a,null,[[6,13]])}));return l.apply(this,arguments)}function m(a,b,c){var e=arguments.length>3&&arguments[3]!==void 0?arguments[3]:{},f=j(e);e=JSON.parse(JSON.stringify(e));return f.process(a,"loaders.gl-".concat(b),{arraybuffer:d.toArrayBuffer(c),options:e,source:"loaders.gl",type:"process"})}}var $a=!1;function ab(){$a||($a=!0,Za());return Ya.exports}var R={},bb={exports:R};function cb(){Object.defineProperty(R,"__esModule",{value:!0});R.registerLoaders=c;R.getRegisteredLoaders=d;R._unregisterLoaders=e;var a=q(),b=[];function c(c){c=Array.isArray(c)?c:[c];var d=!0,e=!1,f=void 0;try{var g=function(){var c=i.value,d=a.normalizeLoader(c);b.find(function(a){return d===a})||b.unshift(d)};for(var h=c[Symbol.iterator](),i;!(d=(i=h.next()).done);d=!0)g()}catch(a){e=!0,f=a}finally{try{!d&&h["return"]!=null&&h["return"]()}finally{if(e)throw f}}}function d(){return b}function e(){b=[]}}var db=!1;function eb(){db||(db=!0,cb());return bb.exports}var fb={},gb={exports:fb};function hb(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(fb,"__esModule",{value:!0});fb.selectLoader=h;var b=a(g("/helpers/typeof")),c=eb(),d=q(),e=/.([^.]+)$/,f=/^data:(.*?)(;|,)/;function h(a){var b=arguments.length>1&&arguments[1]!==void 0?arguments[1]:"",e=arguments.length>2&&arguments[2]!==void 0?arguments[2]:null,f=arguments.length>3&&arguments[3]!==void 0?arguments[3]:{},g=f.nothrow,h=g===void 0?!1:g;b=b||"";if(a&&!Array.isArray(a)){var k=a;d.normalizeLoader(k);return k}a=a||c.getRegisteredLoaders();i(a);b=b.replace(/?.*/,"");var l=null;l=l||j(a,b);l=l||m(a,e);if(!l){if(h)return null;throw new Error("No valid loader found for ".concat(b))}return l}function i(a){var b=!0,c=!1,e=void 0;try{for(var f=a[Symbol.iterator](),a;!(b=(a=f.next()).done);b=!0){a=a.value;d.normalizeLoader(a)}}catch(a){c=!0,e=a}finally{try{!b&&f["return"]!=null&&f["return"]()}finally{if(c)throw e}}}function j(a,b){var c=b.match(f),d=c&&c[1];if(d)return k(a,d);c=b.match(e);d=c&&c[1];b=d&&l(a,d);return b}function k(a,b){var c=!0,d=!1,e=void 0;try{for(var f=a[Symbol.iterator](),a;!(c=(a=f.next()).done);c=!0){a=a.value;if(a.mimeTypes&&a.mimeTypes.includes(b))return a}}catch(a){d=!0,e=a}finally{try{!c&&f["return"]!=null&&f["return"]()}finally{if(d)throw e}}return null}function l(a,b){b=b.toLowerCase();var c=!0,d=!1,e=void 0;try{for(var f=a[Symbol.iterator](),a;!(c=(a=f.next()).done);c=!0){a=a.value;var g=!0,h=!1,i=void 0;try{for(var j=a.extensions[Symbol.iterator](),k;!(g=(k=j.next()).done);g=!0){k=k.value;if(k.toLowerCase()===b)return a}}catch(a){h=!0,i=a}finally{try{!g&&j["return"]!=null&&j["return"]()}finally{if(h)throw i}}}}catch(a){d=!0,e=a}finally{try{!c&&f["return"]!=null&&f["return"]()}finally{if(d)throw e}}return null}function m(a,b){if(!b)return null;var c=!0,d=!1,e=void 0;try{for(var f=a[Symbol.iterator](),a;!(c=(a=f.next()).done);c=!0){a=a.value;if(typeof b==="string"){if(n(b,a))return a}else if(ArrayBuffer.isView(b)){if(o(b.buffer,b.byteOffset,a))return a}else if(b instanceof ArrayBuffer){var g=0;if(o(b,g,a))return a}}}catch(a){d=!0,e=a}finally{try{!c&&f["return"]!=null&&f["return"]()}finally{if(d)throw e}}return null}function n(a,b){return b.testText&&b.testText(a)}function o(a,c,d){var e=Array.isArray(d.test)?"array":b["default"](d.test);switch(e){case"function":return d.test(a,d);case"string":case"array":e=Array.isArray(d.test)?d.test:[d.test];return e.some(function(b){var d=p(a,c,b.length);return b===d});default:return!1}}function p(a,b,c){if(a.byteLength<=b+c)return"";a=new DataView(a);var d="";for(var e=0;e=0?a.substr(0,b):""}}var Nb=!1;function Ob(){Nb||(Nb=!0,Mb());return Lb.exports}var Pb={},Qb={exports:Pb};function Rb(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(Pb,"__esModule",{value:!0});Pb.readFileSync=i;var b=a(g("/helpers/defineProperty")),c=a({}),d=Ba();function e(a,b){var c=Object.keys(a);if(Object.getOwnPropertySymbols){var d=Object.getOwnPropertySymbols(a);b&&(d=d.filter(function(b){return Object.getOwnPropertyDescriptor(a,b).enumerable}));c.push.apply(c,d)}return c}function f(a){for(var c=1;c1&&arguments[1]!==void 0?arguments[1]:{};b=j(b);if(!c["default"]||!c["default"].readFileSync)return null;var e=c["default"].readFileSync(a,b,function(){});return e instanceof Buffer?d.toArrayBuffer(e):e}function j(){var a=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{};a=f({},h,{},a);(a.responseType==="text"||a.dataType==="text")&&(a.encoding=a.encoding||"utf8");return a}}var Sb=!1;function Tb(){Sb||(Sb=!0,Rb());return Qb.exports}var Ub={},Vb={exports:Ub};function Wb(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(Ub,"__esModule",{value:!0});Ub.readFileSyncBrowser=e;var b=a(l()),c={dataType:"arraybuffer",nothrow:!0},d=function(a){return a.startsWith("data:")};function e(a,c){c=f(c);d(a);c.nothrow||b["default"](!1);return null}function f(){var a=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{};a=Object.assign({},c,a);a.responseType=a.responseType||a.dataType;return a}}var Xb=!1;function Yb(){Xb||(Xb=!0,Wb());return Vb.exports}var Zb={},$b={exports:Zb};function ac(){var a=g("/helpers/interopRequireWildcard");Object.defineProperty(Zb,"__esModule",{value:!0});Zb.readFileSync=f;var b=H(),c=a(Tb()),d=U(),e=Yb();function f(a){var f=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{};a=d.resolvePath(a);return!b.isBrowser&&c.readFileSync?c.readFileSync(a,f):e.readFileSyncBrowser(a,f)}}var bc=!1;function cc(){bc||(bc=!0,ac());return $b.exports}var dc={},ec={exports:dc};function fc(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(dc,"__esModule",{value:!0});dc["default"]=c;var b=a(l());function c(a){ArrayBuffer.isView(a)&&(a=a.buffer);if(typeof Buffer!=="undefined"&&a instanceof ArrayBuffer){var c=new Buffer(a.byteLength);a=new Uint8Array(a);for(var d=0;d=0)){a.next=23;break}o=e.slice(0,n+1);e=e.slice(n+1);a.next=21;return o;case 21:a.next=16;break;case 23:g=!0;a.next=5;break;case 26:a.next=32;break;case 28:a.prev=28,a.t0=a["catch"](3),h=!0,i=a.t0;case 32:a.prev=32;a.prev=33;if(!(!g&&j["return"]!=null)){a.next=37;break}a.next=37;return d["default"](j["return"]());case 37:a.prev=37;if(!h){a.next=40;break}throw i;case 40:return a.finish(37);case 41:return a.finish(32);case 42:if(!(e.length>0)){a.next=45;break}a.next=45;return e;case 45:case"end":return a.stop()}},a,null,[[3,28,32,42],[33,,37,41]])}));return r.apply(this,arguments)}function s(a){return t.apply(this,arguments)}function t(){t=e["default"](b["default"].mark(function a(c){var e,g,h,i,j,k,l,m;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:e=1,g=!0,h=!1,a.prev=3,j=f["default"](c);case 5:a.next=7;return d["default"](j.next());case 7:k=a.sent;g=k.done;a.next=11;return d["default"](k.value);case 11:l=a.sent;if(g){a.next=20;break}m=l;a.next=16;return{counter:e,line:m};case 16:e++;case 17:g=!0;a.next=5;break;case 20:a.next=26;break;case 22:a.prev=22,a.t0=a["catch"](3),h=!0,i=a.t0;case 26:a.prev=26;a.prev=27;if(!(!g&&j["return"]!=null)){a.next=31;break}a.next=31;return d["default"](j["return"]());case 31:a.prev=31;if(!h){a.next=34;break}throw i;case 34:return a.finish(31);case 35:return a.finish(26);case 36:case"end":return a.stop()}},a,null,[[3,22,26,36],[27,,31,35]])}));return t.apply(this,arguments)}}var Qc=!1;function Rc(){Qc||(Qc=!0,Pc());return Oc.exports}var Sc={},Tc={exports:Sc};function Uc(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(Sc,"__esModule",{value:!0});Sc["default"]=d;var b=a(g("/regenerator")),c=a(g("/helpers/asyncToGenerator"));function d(a,b){return e.apply(this,arguments)}function e(){e=c["default"](b["default"].mark(function a(c,d){var e,g,h,i,j,k=arguments;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:e=k.length>2&&k[2]!==void 0?k[2]:function(){};g=k.length>3&&k[3]!==void 0?k[3]:function(){};a.next=4;return c;case 4:c=a.sent;if(c.ok){a.next=7;break}return a.abrupt("return",c);case 7:if(c.body){a.next=9;break}return a.abrupt("return",c);case 9:h=c.headers.get("content-length");i=h&&parseInt(h,10);if(h>0){a.next=13;break}return a.abrupt("return",c);case 13:if(!(typeof ReadableStream==="undefined")){a.next=15;break}return a.abrupt("return",c);case 15:j=new ReadableStream({start:function(a){var b=c.body.getReader();f(a,b,0,i,d,e,g)}});return a.abrupt("return",new Response(j));case 17:case"end":return a.stop()}},a)}));return e.apply(this,arguments)}function f(a,b,c,d,e,f,g){return h.apply(this,arguments)}function h(){h=c["default"](b["default"].mark(function a(c,d,e,g,h,i,j){var k,l,m,n;return b["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:a.prev=0;a.next=3;return d.read();case 3:k=a.sent;l=k.done;m=k.value;if(!l){a.next=10;break}i();c.close();return a.abrupt("return");case 10:e+=m.byteLength;n=Math.round(e/g*100);h(n,{loadedBytes:e,totalBytes:g});c.enqueue(m);a.next=16;return f(c,d,e,g,h,i,j);case 16:a.next=22;break;case 18:a.prev=18,a.t0=a["catch"](0),c.error(a.t0),j(a.t0);case 22:case"end":return a.stop()}},a,null,[[0,18]])}));return h.apply(this,arguments)}}var Vc=!1;function Wc(){Vc||(Vc=!0,Uc());return Tc.exports}var $={},Xc={exports:$};function Yc(){var a=g("/helpers/interopRequireWildcard"),b=g("/helpers/interopRequireDefault");Object.defineProperty($,"__esModule",{value:!0});$.createReadStream=D;$.parseFile=F;$.parseFileSync=G;$.loadFile=I;Object.defineProperty($,"parse",{enumerable:!0,get:function(){return e.parse}});Object.defineProperty($,"parseSync",{enumerable:!0,get:function(){return f.parseSync}});Object.defineProperty($,"fetchFile",{enumerable:!0,get:function(){return h.fetchFile}});Object.defineProperty($,"load",{enumerable:!0,get:function(){return i.load}});Object.defineProperty($,"loadInBatches",{enumerable:!0,get:function(){return i.loadInBatches}});Object.defineProperty($,"isBrowser",{enumerable:!0,get:function(){return k.isBrowser}});Object.defineProperty($,"self",{enumerable:!0,get:function(){return k.self}});Object.defineProperty($,"window",{enumerable:!0,get:function(){return k.window}});Object.defineProperty($,"global",{enumerable:!0,get:function(){return k.global}});Object.defineProperty($,"document",{enumerable:!0,get:function(){return k.document}});Object.defineProperty($,"setPathPrefix",{enumerable:!0,get:function(){return m.setPathPrefix}});Object.defineProperty($,"getPathPrefix",{enumerable:!0,get:function(){return m.getPathPrefix}});Object.defineProperty($,"resolvePath",{enumerable:!0,get:function(){return m.resolvePath}});Object.defineProperty($,"readFileSync",{enumerable:!0,get:function(){return n.readFileSync}});Object.defineProperty($,"writeFile",{enumerable:!0,get:function(){return o.writeFile}});Object.defineProperty($,"writeFileSync",{enumerable:!0,get:function(){return o.writeFileSync}});Object.defineProperty($,"_getErrorMessageFromResponseSync",{enumerable:!0,get:function(){return p.getErrorMessageFromResponseSync}});Object.defineProperty($,"_getErrorMessageFromResponse",{enumerable:!0,get:function(){return p.getErrorMessageFromResponse}});Object.defineProperty($,"registerLoaders",{enumerable:!0,get:function(){return q.registerLoaders}});Object.defineProperty($,"_unregisterLoaders",{enumerable:!0,get:function(){return q._unregisterLoaders}});Object.defineProperty($,"parseInBatches",{enumerable:!0,get:function(){return r.parseInBatches}});Object.defineProperty($,"parseInBatchesSync",{enumerable:!0,get:function(){return s.parseInBatchesSync}});Object.defineProperty($,"encode",{enumerable:!0,get:function(){return t.encode}});Object.defineProperty($,"encodeSync",{enumerable:!0,get:function(){return t.encodeSync}});Object.defineProperty($,"encodeInBatches",{enumerable:!0,get:function(){return t.encodeInBatches}});Object.defineProperty($,"save",{enumerable:!0,get:function(){return u.save}});Object.defineProperty($,"saveSync",{enumerable:!0,get:function(){return u.saveSync}});Object.defineProperty($,"isPromise",{enumerable:!0,get:function(){return v.isPromise}});Object.defineProperty($,"isIterable",{enumerable:!0,get:function(){return v.isIterable}});Object.defineProperty($,"isAsyncIterable",{enumerable:!0,get:function(){return v.isAsyncIterable}});Object.defineProperty($,"isIterator",{enumerable:!0,get:function(){return v.isIterator}});Object.defineProperty($,"isFetchResponse",{enumerable:!0,get:function(){return v.isFetchResponse}});Object.defineProperty($,"isReadableStream",{enumerable:!0,get:function(){return v.isReadableStream}});Object.defineProperty($,"isWritableStream",{enumerable:!0,get:function(){return v.isWritableStream}});Object.defineProperty($,"toArrayBuffer",{enumerable:!0,get:function(){return w.toArrayBuffer}});Object.defineProperty($,"getStreamIterator",{enumerable:!0,get:function(){return aa.getStreamIterator}});Object.defineProperty($,"forEach",{enumerable:!0,get:function(){return x.forEach}});Object.defineProperty($,"concatenateAsyncIterator",{enumerable:!0,get:function(){return x.concatenateAsyncIterator}});Object.defineProperty($,"lineAsyncIterator",{enumerable:!0,get:function(){return x.lineAsyncIterator}});Object.defineProperty($,"textDecoderAsyncIterator",{enumerable:!0,get:function(){return x.textDecoderAsyncIterator}});Object.defineProperty($,"numberedLineAsyncIterator",{enumerable:!0,get:function(){return x.numberedLineAsyncIterator}});Object.defineProperty($,"assert",{enumerable:!0,get:function(){return y["default"]}});Object.defineProperty($,"_selectLoader",{enumerable:!0,get:function(){return z.selectLoader}});Object.defineProperty($,"_WorkerThread",{enumerable:!0,get:function(){return A["default"]}});Object.defineProperty($,"_WorkerFarm",{enumerable:!0,get:function(){return ba["default"]}});Object.defineProperty($,"_WorkerPool",{enumerable:!0,get:function(){return ca["default"]}});Object.defineProperty($,"_fetchProgress",{enumerable:!0,get:function(){return B["default"]}});$.path=$.TextDecoder=$.TextEncoder=void 0;var c=b(g("/regenerator")),d=b(g("/helpers/asyncToGenerator")),e=nb(),f=sb(),h=Ab(),i=Jb(),j=U(),k=H();D=a(Ob());$.path=D;var m=U(),n=cc(),o=pc(),p=uc(),q=eb(),r=Fb(),s=zc(),t=Dc(),u=Ic(),v=C(),w=Ga(),aa=ga(),x=Rc(),y=b(l()),z=S(),A=b(Oa()),ba=b(Wa()),ca=b(Sa()),B=b(Wc());F=k.global.TextEncoder;$.TextEncoder=F;G=k.global.TextDecoder;$.TextDecoder=G;function D(a,b){return E.apply(this,arguments)}function E(){E=d["default"](c["default"].mark(function a(b,d){var e;return c["default"].wrap(function(a){while(1)switch(a.prev=a.next){case 0:b=j.resolvePath(b);a.next=4;return h.fetchFile(b,d);case 4:e=a.sent;return a.abrupt("return",e.body);case 6:case"end":return a.stop()}},a)}));return E.apply(this,arguments)}function F(){return e.parse.apply(void 0,arguments)}function G(){return f.parseSync.apply(void 0,arguments)}function I(){return i.load.apply(void 0,arguments)}}var Zc=!1;function $c(){Zc||(Zc=!0,Yc());return Xc.exports}function d(a){switch(a){case void 0:return $c()}}e.exports=d}),null);
-----
mapillary",[],(function $module_mapillary(global,require,requireDynamic,requireLazy,module,exports){ (function (global, factory) { typeof exports === "object" && typeof module !== "undefined" ? factory(exports) : typeof define === "function" && define.amd ? define(["exports"], factory) : (global = typeof globalThis !== "undefined" ? globalThis : global || self, factory(global.mapillary = {})); })(this, (function (exports) { "use strict"; /*! ***************************************************************************** Copyright (c) Microsoft Corporation. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ***************************************************************************** */ /* global Reflect, Promise */ var extendStatics = function(d, b) { extendStatics = Object.setPrototypeOf || ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) || function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; }; return extendStatics(d, b); }; function __extends(d, b) { if (typeof b !== "function" && b !== null) throw new TypeError("Class extends value " + String(b) + " is not a constructor or null"); extendStatics(d, b); function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); } function __awaiter(thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); } function __generator(thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } } function __values(o) { var s = typeof Symbol === "function" && Symbol.iterator, m = s && o[s], i = 0; if (m) return m.call(o); if (o && typeof o.length === "number") return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; throw new TypeError(s ? "Object is not iterable." : "Symbol.iterator is not defined."); } function __read(o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; } function __spreadArray(to, from, pack) { if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) { if (ar || !(i in from)) { if (!ar) ar = Array.prototype.slice.call(from, 0, i); ar[i] = from[i]; } } return to.concat(ar || Array.prototype.slice.call(from)); } function __await(v) { return this instanceof __await ? (this.v = v, this) : new __await(v); } function __asyncGenerator(thisArg, _arguments, generator) { if (!Symbol.asyncIterator) throw new TypeError("Symbol.asyncIterator is not defined."); var g = generator.apply(thisArg, _arguments || []), i, q = []; return i = {}, verb("next"), verb("throw"), verb("return"), i[Symbol.asyncIterator] = function () { return this; }, i; function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; } function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } } function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); } function fulfill(value) { resume("next", value); } function reject(value) { resume("throw", value); } function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); } } function __asyncValues(o) { if (!Symbol.asyncIterator) throw new TypeError("Symbol.asyncIterator is not defined."); var m = o[Symbol.asyncIterator], i; return m ? m.call(o) : (o = typeof __values === "function" ? __values(o) : o[Symbol.iterator](), i = {}, verb("next"), verb("throw"), verb("return"), i[Symbol.asyncIterator] = function () { return this; }, i); function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; } function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); } } function isFunction(value) { return typeof value === "function"; } function createErrorClass(createImpl) { var _super = function (instance) { Error.call(instance); instance.stack = new Error().stack; }; var ctorFunc = createImpl(_super); ctorFunc.prototype = Object.create(Error.prototype); ctorFunc.prototype.constructor = ctorFunc; return ctorFunc; } var UnsubscriptionError = createErrorClass(function (_super) { return function UnsubscriptionErrorImpl(errors) { _super(this); this.message = errors ? errors.length + " errors occurred during unsubscription: " + errors.map(function (err, i) { return i + 1 + ") " + err.toString(); }).join(" ") : ""; this.name = "UnsubscriptionError"; this.errors = errors; }; }); function arrRemove(arr, item) { if (arr) { var index = arr.indexOf(item); 0 <= index && arr.splice(index, 1); } } var Subscription = (function () { function Subscription(initialTeardown) { this.initialTeardown = initialTeardown; this.closed = false; this._parentage = null; this._finalizers = null; } Subscription.prototype.unsubscribe = function () { var e_1, _a, e_2, _b; var errors; if (!this.closed) { this.closed = true; var _parentage = this._parentage; if (_parentage) { this._parentage = null; if (Array.isArray(_parentage)) { try { for (var _parentage_1 = __values(_parentage), _parentage_1_1 = _parentage_1.next(); !_parentage_1_1.done; _parentage_1_1 = _parentage_1.next()) { var parent_1 = _parentage_1_1.value; parent_1.remove(this); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (_parentage_1_1 && !_parentage_1_1.done && (_a = _parentage_1.return)) _a.call(_parentage_1); } finally { if (e_1) throw e_1.error; } } } else { _parentage.remove(this); } } var initialFinalizer = this.initialTeardown; if (isFunction(initialFinalizer)) { try { initialFinalizer(); } catch (e) { errors = e instanceof UnsubscriptionError ? e.errors : [e]; } } var _finalizers = this._finalizers; if (_finalizers) { this._finalizers = null; try { for (var _finalizers_1 = __values(_finalizers), _finalizers_1_1 = _finalizers_1.next(); !_finalizers_1_1.done; _finalizers_1_1 = _finalizers_1.next()) { var finalizer = _finalizers_1_1.value; try { execFinalizer(finalizer); } catch (err) { errors = errors !== null && errors !== void 0 ? errors : []; if (err instanceof UnsubscriptionError) { errors = __spreadArray(__spreadArray([], __read(errors)), __read(err.errors)); } else { errors.push(err); } } } } catch (e_2_1) { e_2 = { error: e_2_1 }; } finally { try { if (_finalizers_1_1 && !_finalizers_1_1.done && (_b = _finalizers_1.return)) _b.call(_finalizers_1); } finally { if (e_2) throw e_2.error; } } } if (errors) { throw new UnsubscriptionError(errors); } } }; Subscription.prototype.add = function (teardown) { var _a; if (teardown && teardown !== this) { if (this.closed) { execFinalizer(teardown); } else { if (teardown instanceof Subscription) { if (teardown.closed || teardown._hasParent(this)) { return; } teardown._addParent(this); } (this._finalizers = (_a = this._finalizers) !== null && _a !== void 0 ? _a : []).push(teardown); } } }; Subscription.prototype._hasParent = function (parent) { var _parentage = this._parentage; return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent)); }; Subscription.prototype._addParent = function (parent) { var _parentage = this._parentage; this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent; }; Subscription.prototype._removeParent = function (parent) { var _parentage = this._parentage; if (_parentage === parent) { this._parentage = null; } else if (Array.isArray(_parentage)) { arrRemove(_parentage, parent); } }; Subscription.prototype.remove = function (teardown) { var _finalizers = this._finalizers; _finalizers && arrRemove(_finalizers, teardown); if (teardown instanceof Subscription) { teardown._removeParent(this); } }; Subscription.EMPTY = (function () { var empty = new Subscription(); empty.closed = true; return empty; })(); return Subscription; }()); var EMPTY_SUBSCRIPTION = Subscription.EMPTY; function isSubscription(value) { return (value instanceof Subscription || (value && "closed" in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))); } function execFinalizer(finalizer) { if (isFunction(finalizer)) { finalizer(); } else { finalizer.unsubscribe(); } } var config = { onUnhandledError: null, onStoppedNotification: null, Promise: undefined, useDeprecatedSynchronousErrorHandling: false, useDeprecatedNextContext: false, }; var timeoutProvider = { setTimeout: function (handler, timeout) { var args = []; for (var _i = 2; _i < arguments.length; _i++) { args[_i - 2] = arguments[_i]; } var delegate = timeoutProvider.delegate; if (delegate === null || delegate === void 0 ? void 0 : delegate.setTimeout) { return delegate.setTimeout.apply(delegate, __spreadArray([handler, timeout], __read(args))); } return setTimeout.apply(void 0, __spreadArray([handler, timeout], __read(args))); }, clearTimeout: function (handle) { var delegate = timeoutProvider.delegate; return ((delegate === null || delegate === void 0 ? void 0 : delegate.clearTimeout) || clearTimeout)(handle); }, delegate: undefined, }; function reportUnhandledError(err) { timeoutProvider.setTimeout(function () { { throw err; } }); } function noop() { } function errorContext(cb) { { cb(); } } var Subscriber = (function (_super) { __extends(Subscriber, _super); function Subscriber(destination) { var _this = _super.call(this) || this; _this.isStopped = false; if (destination) { _this.destination = destination; if (isSubscription(destination)) { destination.add(_this); } } else { _this.destination = EMPTY_OBSERVER; } return _this; } Subscriber.create = function (next, error, complete) { return new SafeSubscriber(next, error, complete); }; Subscriber.prototype.next = function (value) { if (this.isStopped) ; else { this._next(value); } }; Subscriber.prototype.error = function (err) { if (this.isStopped) ; else { this.isStopped = true; this._error(err); } }; Subscriber.prototype.complete = function () { if (this.isStopped) ; else { this.isStopped = true; this._complete(); } }; Subscriber.prototype.unsubscribe = function () { if (!this.closed) { this.isStopped = true; _super.prototype.unsubscribe.call(this); this.destination = null; } }; Subscriber.prototype._next = function (value) { this.destination.next(value); }; Subscriber.prototype._error = function (err) { try { this.destination.error(err); } finally { this.unsubscribe(); } }; Subscriber.prototype._complete = function () { try { this.destination.complete(); } finally { this.unsubscribe(); } }; return Subscriber; }(Subscription)); var _bind = Function.prototype.bind; function bind(fn, thisArg) { return _bind.call(fn, thisArg); } var ConsumerObserver = (function () { function ConsumerObserver(partialObserver) { this.partialObserver = partialObserver; } ConsumerObserver.prototype.next = function (value) { var partialObserver = this.partialObserver; if (partialObserver.next) { try { partialObserver.next(value); } catch (error) { handleUnhandledError(error); } } }; ConsumerObserver.prototype.error = function (err) { var partialObserver = this.partialObserver; if (partialObserver.error) { try { partialObserver.error(err); } catch (error) { handleUnhandledError(error); } } else { handleUnhandledError(err); } }; ConsumerObserver.prototype.complete = function () { var partialObserver = this.partialObserver; if (partialObserver.complete) { try { partialObserver.complete(); } catch (error) { handleUnhandledError(error); } } }; return ConsumerObserver; }()); var SafeSubscriber = (function (_super) { __extends(SafeSubscriber, _super); function SafeSubscriber(observerOrNext, error, complete) { var _this = _super.call(this) || this; var partialObserver; if (isFunction(observerOrNext) || !observerOrNext) { partialObserver = { next: (observerOrNext !== null && observerOrNext !== void 0 ? observerOrNext : undefined), error: error !== null && error !== void 0 ? error : undefined, complete: complete !== null && complete !== void 0 ? complete : undefined, }; } else { var context_1; if (_this && config.useDeprecatedNextContext) { context_1 = Object.create(observerOrNext); context_1.unsubscribe = function () { return _this.unsubscribe(); }; partialObserver = { next: observerOrNext.next && bind(observerOrNext.next, context_1), error: observerOrNext.error && bind(observerOrNext.error, context_1), complete: observerOrNext.complete && bind(observerOrNext.complete, context_1), }; } else { partialObserver = observerOrNext; } } _this.destination = new ConsumerObserver(partialObserver); return _this; } return SafeSubscriber; }(Subscriber)); function handleUnhandledError(error) { { reportUnhandledError(error); } } function defaultErrorHandler(err) { throw err; } var EMPTY_OBSERVER = { closed: true, next: noop, error: defaultErrorHandler, complete: noop, }; var observable = (function () { return (typeof Symbol === "function" && Symbol.observable) || "@@observable"; })(); function identity(x) { return x; } function pipeFromArray(fns) { if (fns.length === 0) { return identity; } if (fns.length === 1) { return fns[0]; } return function piped(input) { return fns.reduce(function (prev, fn) { return fn(prev); }, input); }; } var Observable = (function () { function Observable(subscribe) { if (subscribe) { this._subscribe = subscribe; } } Observable.prototype.lift = function (operator) { var observable = new Observable(); observable.source = this; observable.operator = operator; return observable; }; Observable.prototype.subscribe = function (observerOrNext, error, complete) { var _this = this; var subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete); errorContext(function () { var _a = _this, operator = _a.operator, source = _a.source; subscriber.add(operator ? operator.call(subscriber, source) : source ? _this._subscribe(subscriber) : _this._trySubscribe(subscriber)); }); return subscriber; }; Observable.prototype._trySubscribe = function (sink) { try { return this._subscribe(sink); } catch (err) { sink.error(err); } }; Observable.prototype.forEach = function (next, promiseCtor) { var _this = this; promiseCtor = getPromiseCtor(promiseCtor); return new promiseCtor(function (resolve, reject) { var subscriber = new SafeSubscriber({ next: function (value) { try { next(value); } catch (err) { reject(err); subscriber.unsubscribe(); } }, error: reject, complete: resolve, }); _this.subscribe(subscriber); }); }; Observable.prototype._subscribe = function (subscriber) { var _a; return (_a = this.source) === null || _a === void 0 ? void 0 : _a.subscribe(subscriber); }; Observable.prototype[observable] = function () { return this; }; Observable.prototype.pipe = function () { var operations = []; for (var _i = 0; _i < arguments.length; _i++) { operations[_i] = arguments[_i]; } return pipeFromArray(operations)(this); }; Observable.prototype.toPromise = function (promiseCtor) { var _this = this; promiseCtor = getPromiseCtor(promiseCtor); return new promiseCtor(function (resolve, reject) { var value; _this.subscribe(function (x) { return (value = x); }, function (err) { return reject(err); }, function () { return resolve(value); }); }); }; Observable.create = function (subscribe) { return new Observable(subscribe); }; return Observable; }()); function getPromiseCtor(promiseCtor) { var _a; return (_a = promiseCtor !== null && promiseCtor !== void 0 ? promiseCtor : config.Promise) !== null && _a !== void 0 ? _a : Promise; } function isObserver(value) { return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete); } function isSubscriber(value) { return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value)); } function hasLift(source) { return isFunction(source === null || source === void 0 ? void 0 : source.lift); } function operate(init) { return function (source) { if (hasLift(source)) { return source.lift(function (liftedSource) { try { return init(liftedSource, this); } catch (err) { this.error(err); } }); } throw new TypeError("Unable to lift unknown Observable type"); }; } function createOperatorSubscriber(destination, onNext, onComplete, onError, onFinalize) { return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize); } var OperatorSubscriber = (function (_super) { __extends(OperatorSubscriber, _super); function OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize, shouldUnsubscribe) { var _this = _super.call(this, destination) || this; _this.onFinalize = onFinalize; _this.shouldUnsubscribe = shouldUnsubscribe; _this._next = onNext ? function (value) { try { onNext(value); } catch (err) { destination.error(err); } } : _super.prototype._next; _this._error = onError ? function (err) { try { onError(err); } catch (err) { destination.error(err); } finally { this.unsubscribe(); } } : _super.prototype._error; _this._complete = onComplete ? function () { try { onComplete(); } catch (err) { destination.error(err); } finally { this.unsubscribe(); } } : _super.prototype._complete; return _this; } OperatorSubscriber.prototype.unsubscribe = function () { var _a; if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) { var closed_1 = this.closed; _super.prototype.unsubscribe.call(this); !closed_1 && ((_a = this.onFinalize) === null || _a === void 0 ? void 0 : _a.call(this)); } }; return OperatorSubscriber; }(Subscriber)); function refCount() { return operate(function (source, subscriber) { var connection = null; source._refCount++; var refCounter = createOperatorSubscriber(subscriber, undefined, undefined, undefined, function () { if (!source || source._refCount <= 0 || 0 < --source._refCount) { connection = null; return; } var sharedConnection = source._connection; var conn = connection; connection = null; if (sharedConnection && (!conn || sharedConnection === conn)) { sharedConnection.unsubscribe(); } subscriber.unsubscribe(); }); source.subscribe(refCounter); if (!refCounter.closed) { connection = source.connect(); } }); } var ConnectableObservable = (function (_super) { __extends(ConnectableObservable, _super); function ConnectableObservable(source, subjectFactory) { var _this = _super.call(this) || this; _this.source = source; _this.subjectFactory = subjectFactory; _this._subject = null; _this._refCount = 0; _this._connection = null; if (hasLift(source)) { _this.lift = source.lift; } return _this; } ConnectableObservable.prototype._subscribe = function (subscriber) { return this.getSubject().subscribe(subscriber); }; ConnectableObservable.prototype.getSubject = function () { var subject = this._subject; if (!subject || subject.isStopped) { this._subject = this.subjectFactory(); } return this._subject; }; ConnectableObservable.prototype._teardown = function () { this._refCount = 0; var _connection = this._connection; this._subject = this._connection = null; _connection === null || _connection === void 0 ? void 0 : _connection.unsubscribe(); }; ConnectableObservable.prototype.connect = function () { var _this = this; var connection = this._connection; if (!connection) { connection = this._connection = new Subscription(); var subject_1 = this.getSubject(); connection.add(this.source.subscribe(createOperatorSubscriber(subject_1, undefined, function () { _this._teardown(); subject_1.complete(); }, function (err) { _this._teardown(); subject_1.error(err); }, function () { return _this._teardown(); }))); if (connection.closed) { this._connection = null; connection = Subscription.EMPTY; } } return connection; }; ConnectableObservable.prototype.refCount = function () { return refCount()(this); }; return ConnectableObservable; }(Observable)); var ObjectUnsubscribedError = createErrorClass(function (_super) { return function ObjectUnsubscribedErrorImpl() { _super(this); this.name = "ObjectUnsubscribedError"; this.message = "object unsubscribed"; }; }); var Subject = (function (_super) { __extends(Subject, _super); function Subject() { var _this = _super.call(this) || this; _this.closed = false; _this.currentObservers = null; _this.observers = []; _this.isStopped = false; _this.hasError = false; _this.thrownError = null; return _this; } Subject.prototype.lift = function (operator) { var subject = new AnonymousSubject(this, this); subject.operator = operator; return subject; }; Subject.prototype._throwIfClosed = function () { if (this.closed) { throw new ObjectUnsubscribedError(); } }; Subject.prototype.next = function (value) { var _this = this; errorContext(function () { var e_1, _a; _this._throwIfClosed(); if (!_this.isStopped) { if (!_this.currentObservers) { _this.currentObservers = Array.from(_this.observers); } try { for (var _b = __values(_this.currentObservers), _c = _b.next(); !_c.done; _c = _b.next()) { var observer = _c.value; observer.next(value); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (_c && !_c.done && (_a = _b.return)) _a.call(_b); } finally { if (e_1) throw e_1.error; } } } }); }; Subject.prototype.error = function (err) { var _this = this; errorContext(function () { _this._throwIfClosed(); if (!_this.isStopped) { _this.hasError = _this.isStopped = true; _this.thrownError = err; var observers = _this.observers; while (observers.length) { observers.shift().error(err); } } }); }; Subject.prototype.complete = function () { var _this = this; errorContext(function () { _this._throwIfClosed(); if (!_this.isStopped) { _this.isStopped = true; var observers = _this.observers; while (observers.length) { observers.shift().complete(); } } }); }; Subject.prototype.unsubscribe = function () { this.isStopped = this.closed = true; this.observers = this.currentObservers = null; }; Object.defineProperty(Subject.prototype, "observed", { get: function () { var _a; return ((_a = this.observers) === null || _a === void 0 ? void 0 : _a.length) > 0; }, enumerable: false, configurable: true }); Subject.prototype._trySubscribe = function (subscriber) { this._throwIfClosed(); return _super.prototype._trySubscribe.call(this, subscriber); }; Subject.prototype._subscribe = function (subscriber) { this._throwIfClosed(); this._checkFinalizedStatuses(subscriber); return this._innerSubscribe(subscriber); }; Subject.prototype._innerSubscribe = function (subscriber) { var _this = this; var _a = this, hasError = _a.hasError, isStopped = _a.isStopped, observers = _a.observers; if (hasError || isStopped) { return EMPTY_SUBSCRIPTION; } this.currentObservers = null; observers.push(subscriber); return new Subscription(function () { _this.currentObservers = null; arrRemove(observers, subscriber); }); }; Subject.prototype._checkFinalizedStatuses = function (subscriber) { var _a = this, hasError = _a.hasError, thrownError = _a.thrownError, isStopped = _a.isStopped; if (hasError) { subscriber.error(thrownError); } else if (isStopped) { subscriber.complete(); } }; Subject.prototype.asObservable = function () { var observable = new Observable(); observable.source = this; return observable; }; Subject.create = function (destination, source) { return new AnonymousSubject(destination, source); }; return Subject; }(Observable)); var AnonymousSubject = (function (_super) { __extends(AnonymousSubject, _super); function AnonymousSubject(destination, source) { var _this = _super.call(this) || this; _this.destination = destination; _this.source = source; return _this; } AnonymousSubject.prototype.next = function (value) { var _a, _b; (_b = (_a = this.destination) === null || _a === void 0 ? void 0 : _a.next) === null || _b === void 0 ? void 0 : _b.call(_a, value); }; AnonymousSubject.prototype.error = function (err) { var _a, _b; (_b = (_a = this.destination) === null || _a === void 0 ? void 0 : _a.error) === null || _b === void 0 ? void 0 : _b.call(_a, err); }; AnonymousSubject.prototype.complete = function () { var _a, _b; (_b = (_a = this.destination) === null || _a === void 0 ? void 0 : _a.complete) === null || _b === void 0 ? void 0 : _b.call(_a); }; AnonymousSubject.prototype._subscribe = function (subscriber) { var _a, _b; return (_b = (_a = this.source) === null || _a === void 0 ? void 0 : _a.subscribe(subscriber)) !== null && _b !== void 0 ? _b : EMPTY_SUBSCRIPTION; }; return AnonymousSubject; }(Subject)); var BehaviorSubject = (function (_super) { __extends(BehaviorSubject, _super); function BehaviorSubject(_value) { var _this = _super.call(this) || this; _this._value = _value; return _this; } Object.defineProperty(BehaviorSubject.prototype, "value", { get: function () { return this.getValue(); }, enumerable: false, configurable: true }); BehaviorSubject.prototype._subscribe = function (subscriber) { var subscription = _super.prototype._subscribe.call(this, subscriber); !subscription.closed && subscriber.next(this._value); return subscription; }; BehaviorSubject.prototype.getValue = function () { var _a = this, hasError = _a.hasError, thrownError = _a.thrownError, _value = _a._value; if (hasError) { throw thrownError; } this._throwIfClosed(); return _value; }; BehaviorSubject.prototype.next = function (value) { _super.prototype.next.call(this, (this._value = value)); }; return BehaviorSubject; }(Subject)); var dateTimestampProvider = { now: function () { return (dateTimestampProvider.delegate || Date).now(); }, delegate: undefined, }; var ReplaySubject = (function (_super) { __extends(ReplaySubject, _super); function ReplaySubject(_bufferSize, _windowTime, _timestampProvider) { if (_bufferSize === void 0) { _bufferSize = Infinity; } if (_windowTime === void 0) { _windowTime = Infinity; } if (_timestampProvider === void 0) { _timestampProvider = dateTimestampProvider; } var _this = _super.call(this) || this; _this._bufferSize = _bufferSize; _this._windowTime = _windowTime; _this._timestampProvider = _timestampProvider; _this._buffer = []; _this._infiniteTimeWindow = true; _this._infiniteTimeWindow = _windowTime === Infinity; _this._bufferSize = Math.max(1, _bufferSize); _this._windowTime = Math.max(1, _windowTime); return _this; } ReplaySubject.prototype.next = function (value) { var _a = this, isStopped = _a.isStopped, _buffer = _a._buffer, _infiniteTimeWindow = _a._infiniteTimeWindow, _timestampProvider = _a._timestampProvider, _windowTime = _a._windowTime; if (!isStopped) { _buffer.push(value); !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime); } this._trimBuffer(); _super.prototype.next.call(this, value); }; ReplaySubject.prototype._subscribe = function (subscriber) { this._throwIfClosed(); this._trimBuffer(); var subscription = this._innerSubscribe(subscriber); var _a = this, _infiniteTimeWindow = _a._infiniteTimeWindow, _buffer = _a._buffer; var copy = _buffer.slice(); for (var i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) { subscriber.next(copy[i]); } this._checkFinalizedStatuses(subscriber); return subscription; }; ReplaySubject.prototype._trimBuffer = function () { var _a = this, _bufferSize = _a._bufferSize, _timestampProvider = _a._timestampProvider, _buffer = _a._buffer, _infiniteTimeWindow = _a._infiniteTimeWindow; var adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize; _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize); if (!_infiniteTimeWindow) { var now = _timestampProvider.now(); var last = 0; for (var i = 1; i < _buffer.length && _buffer[i] <= now; i += 2) { last = i; } last && _buffer.splice(0, last + 1); } }; return ReplaySubject; }(Subject)); var Action = (function (_super) { __extends(Action, _super); function Action(scheduler, work) { return _super.call(this) || this; } Action.prototype.schedule = function (state, delay) { return this; }; return Action; }(Subscription)); var intervalProvider = { setInterval: function (handler, timeout) { var args = []; for (var _i = 2; _i < arguments.length; _i++) { args[_i - 2] = arguments[_i]; } var delegate = intervalProvider.delegate; if (delegate === null || delegate === void 0 ? void 0 : delegate.setInterval) { return delegate.setInterval.apply(delegate, __spreadArray([handler, timeout], __read(args))); } return setInterval.apply(void 0, __spreadArray([handler, timeout], __read(args))); }, clearInterval: function (handle) { var delegate = intervalProvider.delegate; return ((delegate === null || delegate === void 0 ? void 0 : delegate.clearInterval) || clearInterval)(handle); }, delegate: undefined, }; var AsyncAction = (function (_super) { __extends(AsyncAction, _super); function AsyncAction(scheduler, work) { var _this = _super.call(this, scheduler, work) || this; _this.scheduler = scheduler; _this.work = work; _this.pending = false; return _this; } AsyncAction.prototype.schedule = function (state, delay) { var _a; if (delay === void 0) { delay = 0; } if (this.closed) { return this; } this.state = state; var id = this.id; var scheduler = this.scheduler; if (id != null) { this.id = this.recycleAsyncId(scheduler, id, delay); } this.pending = true; this.delay = delay; this.id = (_a = this.id) !== null && _a !== void 0 ? _a : this.requestAsyncId(scheduler, this.id, delay); return this; }; AsyncAction.prototype.requestAsyncId = function (scheduler, _id, delay) { if (delay === void 0) { delay = 0; } return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay); }; AsyncAction.prototype.recycleAsyncId = function (_scheduler, id, delay) { if (delay === void 0) { delay = 0; } if (delay != null && this.delay === delay && this.pending === false) { return id; } if (id != null) { intervalProvider.clearInterval(id); } return undefined; }; AsyncAction.prototype.execute = function (state, delay) { if (this.closed) { return new Error("executing a cancelled action"); } this.pending = false; var error = this._execute(state, delay); if (error) { return error; } else if (this.pending === false && this.id != null) { this.id = this.recycleAsyncId(this.scheduler, this.id, null); } }; AsyncAction.prototype._execute = function (state, _delay) { var errored = false; var errorValue; try { this.work(state); } catch (e) { errored = true; errorValue = e ? e : new Error("Scheduled action threw falsy error"); } if (errored) { this.unsubscribe(); return errorValue; } }; AsyncAction.prototype.unsubscribe = function () { if (!this.closed) { var _a = this, id = _a.id, scheduler = _a.scheduler; var actions = scheduler.actions; this.work = this.state = this.scheduler = null; this.pending = false; arrRemove(actions, this); if (id != null) { this.id = this.recycleAsyncId(scheduler, id, null); } this.delay = null; _super.prototype.unsubscribe.call(this); } }; return AsyncAction; }(Action)); var Scheduler = (function () { function Scheduler(schedulerActionCtor, now) { if (now === void 0) { now = Scheduler.now; } this.schedulerActionCtor = schedulerActionCtor; this.now = now; } Scheduler.prototype.schedule = function (work, delay, state) { if (delay === void 0) { delay = 0; } return new this.schedulerActionCtor(this, work).schedule(state, delay); }; Scheduler.now = dateTimestampProvider.now; return Scheduler; }()); var AsyncScheduler = (function (_super) { __extends(AsyncScheduler, _super); function AsyncScheduler(SchedulerAction, now) { if (now === void 0) { now = Scheduler.now; } var _this = _super.call(this, SchedulerAction, now) || this; _this.actions = []; _this._active = false; return _this; } AsyncScheduler.prototype.flush = function (action) { var actions = this.actions; if (this._active) { actions.push(action); return; } var error; this._active = true; do { if ((error = action.execute(action.state, action.delay))) { break; } } while ((action = actions.shift())); this._active = false; if (error) { while ((action = actions.shift())) { action.unsubscribe(); } throw error; } }; return AsyncScheduler; }(Scheduler)); var asyncScheduler = new AsyncScheduler(AsyncAction); var async = asyncScheduler; var EMPTY$1 = new Observable(function (subscriber) { return subscriber.complete(); }); function empty(scheduler) { return scheduler ? emptyScheduled(scheduler) : EMPTY$1; } function emptyScheduled(scheduler) { return new Observable(function (subscriber) { return scheduler.schedule(function () { return subscriber.complete(); }); }); } function isScheduler(value) { return value && isFunction(value.schedule); } function last$1(arr) { return arr[arr.length - 1]; } function popResultSelector(args) { return isFunction(last$1(args)) ? args.pop() : undefined; } function popScheduler(args) { return isScheduler(last$1(args)) ? args.pop() : undefined; } function popNumber(args, defaultValue) { return typeof last$1(args) === "number" ? args.pop() : defaultValue; } var isArrayLike = (function (x) { return x && typeof x.length === "number" && typeof x !== "function"; }); function isPromise(value) { return isFunction(value === null || value === void 0 ? void 0 : value.then); } function isInteropObservable(input) { return isFunction(input[observable]); } function isAsyncIterable(obj) { return Symbol.asyncIterator && isFunction(obj === null || obj === void 0 ? void 0 : obj[Symbol.asyncIterator]); } function createInvalidObservableTypeError(input) { return new TypeError("You provided " + (input !== null && typeof input === "object" ? "an invalid object" : """ + input + """) + " where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable."); } function getSymbolIterator() { if (typeof Symbol !== "function" || !Symbol.iterator) { return "@@iterator"; } return Symbol.iterator; } var iterator = getSymbolIterator(); function isIterable(input) { return isFunction(input === null || input === void 0 ? void 0 : input[iterator]); } function readableStreamLikeToAsyncGenerator(readableStream) { return __asyncGenerator(this, arguments, function readableStreamLikeToAsyncGenerator_1() { var reader, _a, value, done; return __generator(this, function (_b) { switch (_b.label) { case 0: reader = readableStream.getReader(); _b.label = 1; case 1: _b.trys.push([1, , 9, 10]); _b.label = 2; case 2: return [4, __await(reader.read())]; case 3: _a = _b.sent(), value = _a.value, done = _a.done; if (!done) return [3, 5]; return [4, __await(void 0)]; case 4: return [2, _b.sent()]; case 5: return [4, __await(value)]; case 6: return [4, _b.sent()]; case 7: _b.sent(); return [3, 2]; case 8: return [3, 10]; case 9: reader.releaseLock(); return [7]; case 10: return [2]; } }); }); } function isReadableStreamLike(obj) { return isFunction(obj === null || obj === void 0 ? void 0 : obj.getReader); } function innerFrom(input) { if (input instanceof Observable) { return input; } if (input != null) { if (isInteropObservable(input)) { return fromInteropObservable(input); } if (isArrayLike(input)) { return fromArrayLike(input); } if (isPromise(input)) { return fromPromise(input); } if (isAsyncIterable(input)) { return fromAsyncIterable(input); } if (isIterable(input)) { return fromIterable(input); } if (isReadableStreamLike(input)) { return fromReadableStreamLike(input); } } throw createInvalidObservableTypeError(input); } function fromInteropObservable(obj) { return new Observable(function (subscriber) { var obs = obj[observable](); if (isFunction(obs.subscribe)) { return obs.subscribe(subscriber); } throw new TypeError("Provided object does not correctly implement Symbol.observable"); }); } function fromArrayLike(array) { return new Observable(function (subscriber) { for (var i = 0; i < array.length && !subscriber.closed; i++) { subscriber.next(array[i]); } subscriber.complete(); }); } function fromPromise(promise) { return new Observable(function (subscriber) { promise .then(function (value) { if (!subscriber.closed) { subscriber.next(value); subscriber.complete(); } }, function (err) { return subscriber.error(err); }) .then(null, reportUnhandledError); }); } function fromIterable(iterable) { return new Observable(function (subscriber) { var e_1, _a; try { for (var iterable_1 = __values(iterable), iterable_1_1 = iterable_1.next(); !iterable_1_1.done; iterable_1_1 = iterable_1.next()) { var value = iterable_1_1.value; subscriber.next(value); if (subscriber.closed) { return; } } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (iterable_1_1 && !iterable_1_1.done && (_a = iterable_1.return)) _a.call(iterable_1); } finally { if (e_1) throw e_1.error; } } subscriber.complete(); }); } function fromAsyncIterable(asyncIterable) { return new Observable(function (subscriber) { process(asyncIterable, subscriber).catch(function (err) { return subscriber.error(err); }); }); } function fromReadableStreamLike(readableStream) { return fromAsyncIterable(readableStreamLikeToAsyncGenerator(readableStream)); } function process(asyncIterable, subscriber) { var asyncIterable_1, asyncIterable_1_1; var e_2, _a; return __awaiter(this, void 0, void 0, function () { var value, e_2_1; return __generator(this, function (_b) { switch (_b.label) { case 0: _b.trys.push([0, 5, 6, 11]); asyncIterable_1 = __asyncValues(asyncIterable); _b.label = 1; case 1: return [4, asyncIterable_1.next()]; case 2: if (!(asyncIterable_1_1 = _b.sent(), !asyncIterable_1_1.done)) return [3, 4]; value = asyncIterable_1_1.value; subscriber.next(value); if (subscriber.closed) { return [2]; } _b.label = 3; case 3: return [3, 1]; case 4: return [3, 11]; case 5: e_2_1 = _b.sent(); e_2 = { error: e_2_1 }; return [3, 11]; case 6: _b.trys.push([6, , 9, 10]); if (!(asyncIterable_1_1 && !asyncIterable_1_1.done && (_a = asyncIterable_1.return))) return [3, 8]; return [4, _a.call(asyncIterable_1)]; case 7: _b.sent(); _b.label = 8; case 8: return [3, 10]; case 9: if (e_2) throw e_2.error; return [7]; case 10: return [7]; case 11: subscriber.complete(); return [2]; } }); }); } function executeSchedule(parentSubscription, scheduler, work, delay, repeat) { if (delay === void 0) { delay = 0; } if (repeat === void 0) { repeat = false; } var scheduleSubscription = scheduler.schedule(function () { work(); if (repeat) { parentSubscription.add(this.schedule(null, delay)); } else { this.unsubscribe(); } }, delay); parentSubscription.add(scheduleSubscription); if (!repeat) { return scheduleSubscription; } } function observeOn(scheduler, delay) { if (delay === void 0) { delay = 0; } return operate(function (source, subscriber) { source.subscribe(createOperatorSubscriber(subscriber, function (value) { return executeSchedule(subscriber, scheduler, function () { return subscriber.next(value); }, delay); }, function () { return executeSchedule(subscriber, scheduler, function () { return subscriber.complete(); }, delay); }, function (err) { return executeSchedule(subscriber, scheduler, function () { return subscriber.error(err); }, delay); })); }); } function subscribeOn(scheduler, delay) { if (delay === void 0) { delay = 0; } return operate(function (source, subscriber) { subscriber.add(scheduler.schedule(function () { return source.subscribe(subscriber); }, delay)); }); } function scheduleObservable(input, scheduler) { return innerFrom(input).pipe(subscribeOn(scheduler), observeOn(scheduler)); } function schedulePromise(input, scheduler) { return innerFrom(input).pipe(subscribeOn(scheduler), observeOn(scheduler)); } function scheduleArray(input, scheduler) { return new Observable(function (subscriber) { var i = 0; return scheduler.schedule(function () { if (i === input.length) { subscriber.complete(); } else { subscriber.next(input[i++]); if (!subscriber.closed) { this.schedule(); } } }); }); } function scheduleIterable(input, scheduler) { return new Observable(function (subscriber) { var iterator$1; executeSchedule(subscriber, scheduler, function () { iterator$1 = input[iterator](); executeSchedule(subscriber, scheduler, function () { var _a; var value; var done; try { (_a = iterator$1.next(), value = _a.value, done = _a.done); } catch (err) { subscriber.error(err); return; } if (done) { subscriber.complete(); } else { subscriber.next(value); } }, 0, true); }); return function () { return isFunction(iterator$1 === null || iterator$1 === void 0 ? void 0 : iterator$1.return) && iterator$1.return(); }; }); } function scheduleAsyncIterable(input, scheduler) { if (!input) { throw new Error("Iterable cannot be null"); } return new Observable(function (subscriber) { executeSchedule(subscriber, scheduler, function () { var iterator = input[Symbol.asyncIterator](); executeSchedule(subscriber, scheduler, function () { iterator.next().then(function (result) { if (result.done) { subscriber.complete(); } else { subscriber.next(result.value); } }); }, 0, true); }); }); } function scheduleReadableStreamLike(input, scheduler) { return scheduleAsyncIterable(readableStreamLikeToAsyncGenerator(input), scheduler); } function scheduled(input, scheduler) { if (input != null) { if (isInteropObservable(input)) { return scheduleObservable(input, scheduler); } if (isArrayLike(input)) { return scheduleArray(input, scheduler); } if (isPromise(input)) { return schedulePromise(input, scheduler); } if (isAsyncIterable(input)) { return scheduleAsyncIterable(input, scheduler); } if (isIterable(input)) { return scheduleIterable(input, scheduler); } if (isReadableStreamLike(input)) { return scheduleReadableStreamLike(input, scheduler); } } throw createInvalidObservableTypeError(input); } function from(input, scheduler) { return scheduler ? scheduled(input, scheduler) : innerFrom(input); } function of() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var scheduler = popScheduler(args); return from(args, scheduler); } function throwError(errorOrErrorFactory, scheduler) { var errorFactory = isFunction(errorOrErrorFactory) ? errorOrErrorFactory : function () { return errorOrErrorFactory; }; var init = function (subscriber) { return subscriber.error(errorFactory()); }; return new Observable(scheduler ? function (subscriber) { return scheduler.schedule(init, 0, subscriber); } : init); } var EmptyError = createErrorClass(function (_super) { return function EmptyErrorImpl() { _super(this); this.name = "EmptyError"; this.message = "no elements in sequence"; }; }); function isValidDate(value) { return value instanceof Date && !isNaN(value); } var TimeoutError = createErrorClass(function (_super) { return function TimeoutErrorImpl(info) { if (info === void 0) { info = null; } _super(this); this.message = "Timeout has occurred"; this.name = "TimeoutError"; this.info = info; }; }); function timeout(config, schedulerArg) { var _a = (isValidDate(config) ? { first: config } : typeof config === "number" ? { each: config } : config), first = _a.first, each = _a.each, _b = _a.with, _with = _b === void 0 ? timeoutErrorFactory : _b, _c = _a.scheduler, scheduler = _c === void 0 ? schedulerArg !== null && schedulerArg !== void 0 ? schedulerArg : asyncScheduler : _c, _d = _a.meta, meta = _d === void 0 ? null : _d; if (first == null && each == null) { throw new TypeError("No timeout provided."); } return operate(function (source, subscriber) { var originalSourceSubscription; var timerSubscription; var lastValue = null; var seen = 0; var startTimer = function (delay) { timerSubscription = executeSchedule(subscriber, scheduler, function () { try { originalSourceSubscription.unsubscribe(); innerFrom(_with({ meta: meta, lastValue: lastValue, seen: seen, })).subscribe(subscriber); } catch (err) { subscriber.error(err); } }, delay); }; originalSourceSubscription = source.subscribe(createOperatorSubscriber(subscriber, function (value) { timerSubscription === null || timerSubscription === void 0 ? void 0 : timerSubscription.unsubscribe(); seen++; subscriber.next((lastValue = value)); each > 0 && startTimer(each); }, undefined, undefined, function () { if (!(timerSubscription === null || timerSubscription === void 0 ? void 0 : timerSubscription.closed)) { timerSubscription === null || timerSubscription === void 0 ? void 0 : timerSubscription.unsubscribe(); } lastValue = null; })); !seen && startTimer(first != null ? (typeof first === "number" ? first : +first - scheduler.now()) : each); }); } function timeoutErrorFactory(info) { throw new TimeoutError(info); } function map(project, thisArg) { return operate(function (source, subscriber) { var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { subscriber.next(project.call(thisArg, value, index++)); })); }); } var isArray$6 = Array.isArray; function callOrApply(fn, args) { return isArray$6(args) ? fn.apply(void 0, __spreadArray([], __read(args))) : fn(args); } function mapOneOrManyArgs(fn) { return map(function (args) { return callOrApply(fn, args); }); } var isArray$5 = Array.isArray; var getPrototypeOf = Object.getPrototypeOf, objectProto = Object.prototype, getKeys = Object.keys; function argsArgArrayOrObject(args) { if (args.length === 1) { var first_1 = args[0]; if (isArray$5(first_1)) { return { args: first_1, keys: null }; } if (isPOJO(first_1)) { var keys = getKeys(first_1); return { args: keys.map(function (key) { return first_1[key]; }), keys: keys, }; } } return { args: args, keys: null }; } function isPOJO(obj) { return obj && typeof obj === "object" && getPrototypeOf(obj) === objectProto; } function createObject(keys, values) { return keys.reduce(function (result, key, i) { return ((result[key] = values[i]), result); }, {}); } function combineLatest() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var scheduler = popScheduler(args); var resultSelector = popResultSelector(args); var _a = argsArgArrayOrObject(args), observables = _a.args, keys = _a.keys; if (observables.length === 0) { return from([], scheduler); } var result = new Observable(combineLatestInit(observables, scheduler, keys ? function (values) { return createObject(keys, values); } : identity)); return resultSelector ? result.pipe(mapOneOrManyArgs(resultSelector)) : result; } function combineLatestInit(observables, scheduler, valueTransform) { if (valueTransform === void 0) { valueTransform = identity; } return function (subscriber) { maybeSchedule(scheduler, function () { var length = observables.length; var values = new Array(length); var active = length; var remainingFirstValues = length; var _loop_1 = function (i) { maybeSchedule(scheduler, function () { var source = from(observables[i], scheduler); var hasFirstValue = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { values[i] = value; if (!hasFirstValue) { hasFirstValue = true; remainingFirstValues--; } if (!remainingFirstValues) { subscriber.next(valueTransform(values.slice())); } }, function () { if (!--active) { subscriber.complete(); } })); }, subscriber); }; for (var i = 0; i < length; i++) { _loop_1(i); } }, subscriber); }; } function maybeSchedule(scheduler, execute, subscription) { if (scheduler) { executeSchedule(subscription, scheduler, execute); } else { execute(); } } function mergeInternals(source, subscriber, project, concurrent, onBeforeNext, expand, innerSubScheduler, additionalFinalizer) { var buffer = []; var active = 0; var index = 0; var isComplete = false; var checkComplete = function () { if (isComplete && !buffer.length && !active) { subscriber.complete(); } }; var outerNext = function (value) { return (active < concurrent ? doInnerSub(value) : buffer.push(value)); }; var doInnerSub = function (value) { expand && subscriber.next(value); active++; var innerComplete = false; innerFrom(project(value, index++)).subscribe(createOperatorSubscriber(subscriber, function (innerValue) { onBeforeNext === null || onBeforeNext === void 0 ? void 0 : onBeforeNext(innerValue); if (expand) { outerNext(innerValue); } else { subscriber.next(innerValue); } }, function () { innerComplete = true; }, undefined, function () { if (innerComplete) { try { active--; var _loop_1 = function () { var bufferedValue = buffer.shift(); if (innerSubScheduler) { executeSchedule(subscriber, innerSubScheduler, function () { return doInnerSub(bufferedValue); }); } else { doInnerSub(bufferedValue); } }; while (buffer.length && active < concurrent) { _loop_1(); } checkComplete(); } catch (err) { subscriber.error(err); } } })); }; source.subscribe(createOperatorSubscriber(subscriber, outerNext, function () { isComplete = true; checkComplete(); })); return function () { additionalFinalizer === null || additionalFinalizer === void 0 ? void 0 : additionalFinalizer(); }; } function mergeMap(project, resultSelector, concurrent) { if (concurrent === void 0) { concurrent = Infinity; } if (isFunction(resultSelector)) { return mergeMap(function (a, i) { return map(function (b, ii) { return resultSelector(a, b, i, ii); })(innerFrom(project(a, i))); }, concurrent); } else if (typeof resultSelector === "number") { concurrent = resultSelector; } return operate(function (source, subscriber) { return mergeInternals(source, subscriber, project, concurrent); }); } function mergeAll(concurrent) { if (concurrent === void 0) { concurrent = Infinity; } return mergeMap(identity, concurrent); } function concatAll() { return mergeAll(1); } function concat() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } return concatAll()(from(args, popScheduler(args))); } var nodeEventEmitterMethods = ["addListener", "removeListener"]; var eventTargetMethods = ["addEventListener", "removeEventListener"]; var jqueryMethods = ["on", "off"]; function fromEvent(target, eventName, options, resultSelector) { if (isFunction(options)) { resultSelector = options; options = undefined; } if (resultSelector) { return fromEvent(target, eventName, options).pipe(mapOneOrManyArgs(resultSelector)); } var _a = __read(isEventTarget(target) ? eventTargetMethods.map(function (methodName) { return function (handler) { return target[methodName](eventName, handler, options); }; }) : isNodeStyleEventEmitter(target) ? nodeEventEmitterMethods.map(toCommonHandlerRegistry(target, eventName)) : isJQueryStyleEventEmitter(target) ? jqueryMethods.map(toCommonHandlerRegistry(target, eventName)) : [], 2), add = _a[0], remove = _a[1]; if (!add) { if (isArrayLike(target)) { return mergeMap(function (subTarget) { return fromEvent(subTarget, eventName, options); })(innerFrom(target)); } } if (!add) { throw new TypeError("Invalid event target"); } return new Observable(function (subscriber) { var handler = function () { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } return subscriber.next(1 < args.length ? args : args[0]); }; add(handler); return function () { return remove(handler); }; }); } function toCommonHandlerRegistry(target, eventName) { return function (methodName) { return function (handler) { return target[methodName](eventName, handler); }; }; } function isNodeStyleEventEmitter(target) { return isFunction(target.addListener) && isFunction(target.removeListener); } function isJQueryStyleEventEmitter(target) { return isFunction(target.on) && isFunction(target.off); } function isEventTarget(target) { return isFunction(target.addEventListener) && isFunction(target.removeEventListener); } function timer(dueTime, intervalOrScheduler, scheduler) { if (dueTime === void 0) { dueTime = 0; } if (scheduler === void 0) { scheduler = async; } var intervalDuration = -1; if (intervalOrScheduler != null) { if (isScheduler(intervalOrScheduler)) { scheduler = intervalOrScheduler; } else { intervalDuration = intervalOrScheduler; } } return new Observable(function (subscriber) { var due = isValidDate(dueTime) ? +dueTime - scheduler.now() : dueTime; if (due < 0) { due = 0; } var n = 0; return scheduler.schedule(function () { if (!subscriber.closed) { subscriber.next(n++); if (0 <= intervalDuration) { this.schedule(undefined, intervalDuration); } else { subscriber.complete(); } } }, due); }); } function merge() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var scheduler = popScheduler(args); var concurrent = popNumber(args, Infinity); var sources = args; return !sources.length ? EMPTY$1 : sources.length === 1 ? innerFrom(sources[0]) : mergeAll(concurrent)(from(sources, scheduler)); } var isArray$4 = Array.isArray; function argsOrArgArray(args) { return args.length === 1 && isArray$4(args[0]) ? args[0] : args; } function filter(predicate, thisArg) { return operate(function (source, subscriber) { var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { return predicate.call(thisArg, value, index++) && subscriber.next(value); })); }); } function zip() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var resultSelector = popResultSelector(args); var sources = argsOrArgArray(args); return sources.length ? new Observable(function (subscriber) { var buffers = sources.map(function () { return []; }); var completed = sources.map(function () { return false; }); subscriber.add(function () { buffers = completed = null; }); var _loop_1 = function (sourceIndex) { innerFrom(sources[sourceIndex]).subscribe(createOperatorSubscriber(subscriber, function (value) { buffers[sourceIndex].push(value); if (buffers.every(function (buffer) { return buffer.length; })) { var result = buffers.map(function (buffer) { return buffer.shift(); }); subscriber.next(resultSelector ? resultSelector.apply(void 0, __spreadArray([], __read(result))) : result); if (buffers.some(function (buffer, i) { return !buffer.length && completed[i]; })) { subscriber.complete(); } } }, function () { completed[sourceIndex] = true; !buffers[sourceIndex].length && subscriber.complete(); })); }; for (var sourceIndex = 0; !subscriber.closed && sourceIndex < sources.length; sourceIndex++) { _loop_1(sourceIndex); } return function () { buffers = completed = null; }; }) : EMPTY$1; } function audit(durationSelector) { return operate(function (source, subscriber) { var hasValue = false; var lastValue = null; var durationSubscriber = null; var isComplete = false; var endDuration = function () { durationSubscriber === null || durationSubscriber === void 0 ? void 0 : durationSubscriber.unsubscribe(); durationSubscriber = null; if (hasValue) { hasValue = false; var value = lastValue; lastValue = null; subscriber.next(value); } isComplete && subscriber.complete(); }; var cleanupDuration = function () { durationSubscriber = null; isComplete && subscriber.complete(); }; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; lastValue = value; if (!durationSubscriber) { innerFrom(durationSelector(value)).subscribe((durationSubscriber = createOperatorSubscriber(subscriber, endDuration, cleanupDuration))); } }, function () { isComplete = true; (!hasValue || !durationSubscriber || durationSubscriber.closed) && subscriber.complete(); })); }); } function auditTime(duration, scheduler) { if (scheduler === void 0) { scheduler = asyncScheduler; } return audit(function () { return timer(duration, scheduler); }); } function bufferCount(bufferSize, startBufferEvery) { if (startBufferEvery === void 0) { startBufferEvery = null; } startBufferEvery = startBufferEvery !== null && startBufferEvery !== void 0 ? startBufferEvery : bufferSize; return operate(function (source, subscriber) { var buffers = []; var count = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var e_1, _a, e_2, _b; var toEmit = null; if (count++ % startBufferEvery === 0) { buffers.push([]); } try { for (var buffers_1 = __values(buffers), buffers_1_1 = buffers_1.next(); !buffers_1_1.done; buffers_1_1 = buffers_1.next()) { var buffer = buffers_1_1.value; buffer.push(value); if (bufferSize <= buffer.length) { toEmit = toEmit !== null && toEmit !== void 0 ? toEmit : []; toEmit.push(buffer); } } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (buffers_1_1 && !buffers_1_1.done && (_a = buffers_1.return)) _a.call(buffers_1); } finally { if (e_1) throw e_1.error; } } if (toEmit) { try { for (var toEmit_1 = __values(toEmit), toEmit_1_1 = toEmit_1.next(); !toEmit_1_1.done; toEmit_1_1 = toEmit_1.next()) { var buffer = toEmit_1_1.value; arrRemove(buffers, buffer); subscriber.next(buffer); } } catch (e_2_1) { e_2 = { error: e_2_1 }; } finally { try { if (toEmit_1_1 && !toEmit_1_1.done && (_b = toEmit_1.return)) _b.call(toEmit_1); } finally { if (e_2) throw e_2.error; } } } }, function () { var e_3, _a; try { for (var buffers_2 = __values(buffers), buffers_2_1 = buffers_2.next(); !buffers_2_1.done; buffers_2_1 = buffers_2.next()) { var buffer = buffers_2_1.value; subscriber.next(buffer); } } catch (e_3_1) { e_3 = { error: e_3_1 }; } finally { try { if (buffers_2_1 && !buffers_2_1.done && (_a = buffers_2.return)) _a.call(buffers_2); } finally { if (e_3) throw e_3.error; } } subscriber.complete(); }, undefined, function () { buffers = null; })); }); } function bufferWhen(closingSelector) { return operate(function (source, subscriber) { var buffer = null; var closingSubscriber = null; var openBuffer = function () { closingSubscriber === null || closingSubscriber === void 0 ? void 0 : closingSubscriber.unsubscribe(); var b = buffer; buffer = []; b && subscriber.next(b); innerFrom(closingSelector()).subscribe((closingSubscriber = createOperatorSubscriber(subscriber, openBuffer, noop))); }; openBuffer(); source.subscribe(createOperatorSubscriber(subscriber, function (value) { return buffer === null || buffer === void 0 ? void 0 : buffer.push(value); }, function () { buffer && subscriber.next(buffer); subscriber.complete(); }, undefined, function () { return (buffer = closingSubscriber = null); })); }); } function catchError(selector) { return operate(function (source, subscriber) { var innerSub = null; var syncUnsub = false; var handledResult; innerSub = source.subscribe(createOperatorSubscriber(subscriber, undefined, undefined, function (err) { handledResult = innerFrom(selector(err, catchError(selector)(source))); if (innerSub) { innerSub.unsubscribe(); innerSub = null; handledResult.subscribe(subscriber); } else { syncUnsub = true; } })); if (syncUnsub) { innerSub.unsubscribe(); innerSub = null; handledResult.subscribe(subscriber); } }); } function scanInternals(accumulator, seed, hasSeed, emitOnNext, emitBeforeComplete) { return function (source, subscriber) { var hasState = hasSeed; var state = seed; var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var i = index++; state = hasState ? accumulator(state, value, i) : ((hasState = true), value); emitOnNext && subscriber.next(state); }, emitBeforeComplete && (function () { hasState && subscriber.next(state); subscriber.complete(); }))); }; } function reduce(accumulator, seed) { return operate(scanInternals(accumulator, seed, arguments.length >= 2, false, true)); } function concatMap(project, resultSelector) { return isFunction(resultSelector) ? mergeMap(project, resultSelector, 1) : mergeMap(project, 1); } function fromSubscribable(subscribable) { return new Observable(function (subscriber) { return subscribable.subscribe(subscriber); }); } var DEFAULT_CONFIG = { connector: function () { return new Subject(); }, }; function connect(selector, config) { if (config === void 0) { config = DEFAULT_CONFIG; } var connector = config.connector; return operate(function (source, subscriber) { var subject = connector(); innerFrom(selector(fromSubscribable(subject))).subscribe(subscriber); subscriber.add(source.subscribe(subject)); }); } function debounceTime(dueTime, scheduler) { if (scheduler === void 0) { scheduler = asyncScheduler; } return operate(function (source, subscriber) { var activeTask = null; var lastValue = null; var lastTime = null; var emit = function () { if (activeTask) { activeTask.unsubscribe(); activeTask = null; var value = lastValue; lastValue = null; subscriber.next(value); } }; function emitWhenIdle() { var targetTime = lastTime + dueTime; var now = scheduler.now(); if (now < targetTime) { activeTask = this.schedule(undefined, targetTime - now); subscriber.add(activeTask); return; } emit(); } source.subscribe(createOperatorSubscriber(subscriber, function (value) { lastValue = value; lastTime = scheduler.now(); if (!activeTask) { activeTask = scheduler.schedule(emitWhenIdle, dueTime); subscriber.add(activeTask); } }, function () { emit(); subscriber.complete(); }, undefined, function () { lastValue = activeTask = null; })); }); } function defaultIfEmpty(defaultValue) { return operate(function (source, subscriber) { var hasValue = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; subscriber.next(value); }, function () { if (!hasValue) { subscriber.next(defaultValue); } subscriber.complete(); })); }); } function take(count) { return count <= 0 ? function () { return EMPTY$1; } : operate(function (source, subscriber) { var seen = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { if (++seen <= count) { subscriber.next(value); if (count <= seen) { subscriber.complete(); } } })); }); } function distinctUntilChanged(comparator, keySelector) { if (keySelector === void 0) { keySelector = identity; } comparator = comparator !== null && comparator !== void 0 ? comparator : defaultCompare$3; return operate(function (source, subscriber) { var previousKey; var first = true; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var currentKey = keySelector(value); if (first || !comparator(previousKey, currentKey)) { first = false; previousKey = currentKey; subscriber.next(value); } })); }); } function defaultCompare$3(a, b) { return a === b; } function throwIfEmpty(errorFactory) { if (errorFactory === void 0) { errorFactory = defaultErrorFactory; } return operate(function (source, subscriber) { var hasValue = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; subscriber.next(value); }, function () { return (hasValue ? subscriber.complete() : subscriber.error(errorFactory())); })); }); } function defaultErrorFactory() { return new EmptyError(); } function expand(project, concurrent, scheduler) { if (concurrent === void 0) { concurrent = Infinity; } concurrent = (concurrent || 0) < 1 ? Infinity : concurrent; return operate(function (source, subscriber) { return mergeInternals(source, subscriber, project, concurrent, undefined, true, scheduler); }); } function finalize(callback) { return operate(function (source, subscriber) { try { source.subscribe(subscriber); } finally { subscriber.add(callback); } }); } function first(predicate, defaultValue) { var hasDefaultValue = arguments.length >= 2; return function (source) { return source.pipe(predicate ? filter(function (v, i) { return predicate(v, i, source); }) : identity, take(1), hasDefaultValue ? defaultIfEmpty(defaultValue) : throwIfEmpty(function () { return new EmptyError(); })); }; } function takeLast(count) { return count <= 0 ? function () { return EMPTY$1; } : operate(function (source, subscriber) { var buffer = []; source.subscribe(createOperatorSubscriber(subscriber, function (value) { buffer.push(value); count < buffer.length && buffer.shift(); }, function () { var e_1, _a; try { for (var buffer_1 = __values(buffer), buffer_1_1 = buffer_1.next(); !buffer_1_1.done; buffer_1_1 = buffer_1.next()) { var value = buffer_1_1.value; subscriber.next(value); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (buffer_1_1 && !buffer_1_1.done && (_a = buffer_1.return)) _a.call(buffer_1); } finally { if (e_1) throw e_1.error; } } subscriber.complete(); }, undefined, function () { buffer = null; })); }); } function last(predicate, defaultValue) { var hasDefaultValue = arguments.length >= 2; return function (source) { return source.pipe(predicate ? filter(function (v, i) { return predicate(v, i, source); }) : identity, takeLast(1), hasDefaultValue ? defaultIfEmpty(defaultValue) : throwIfEmpty(function () { return new EmptyError(); })); }; } function multicast(subjectOrSubjectFactory, selector) { var subjectFactory = isFunction(subjectOrSubjectFactory) ? subjectOrSubjectFactory : function () { return subjectOrSubjectFactory; }; if (isFunction(selector)) { return connect(selector, { connector: subjectFactory, }); } return function (source) { return new ConnectableObservable(source, subjectFactory); }; } function pairwise() { return operate(function (source, subscriber) { var prev; var hasPrev = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var p = prev; prev = value; hasPrev && subscriber.next([p, value]); hasPrev = true; })); }); } function pluck() { var properties = []; for (var _i = 0; _i < arguments.length; _i++) { properties[_i] = arguments[_i]; } var length = properties.length; if (length === 0) { throw new Error("list of properties cannot be empty."); } return map(function (x) { var currentProp = x; for (var i = 0; i < length; i++) { var p = currentProp === null || currentProp === void 0 ? void 0 : currentProp[properties[i]]; if (typeof p !== "undefined") { currentProp = p; } else { return undefined; } } return currentProp; }); } function publish(selector) { return selector ? function (source) { return connect(selector)(source); } : function (source) { return multicast(new Subject())(source); }; } function publishReplay(bufferSize, windowTime, selectorOrScheduler, timestampProvider) { if (selectorOrScheduler && !isFunction(selectorOrScheduler)) { timestampProvider = selectorOrScheduler; } var selector = isFunction(selectorOrScheduler) ? selectorOrScheduler : undefined; return function (source) { return multicast(new ReplaySubject(bufferSize, windowTime, timestampProvider), selector)(source); }; } function retry(configOrCount) { if (configOrCount === void 0) { configOrCount = Infinity; } var config; if (configOrCount && typeof configOrCount === "object") { config = configOrCount; } else { config = { count: configOrCount, }; } var _a = config.count, count = _a === void 0 ? Infinity : _a, delay = config.delay, _b = config.resetOnSuccess, resetOnSuccess = _b === void 0 ? false : _b; return count <= 0 ? identity : operate(function (source, subscriber) { var soFar = 0; var innerSub; var subscribeForRetry = function () { var syncUnsub = false; innerSub = source.subscribe(createOperatorSubscriber(subscriber, function (value) { if (resetOnSuccess) { soFar = 0; } subscriber.next(value); }, undefined, function (err) { if (soFar++ < count) { var resub_1 = function () { if (innerSub) { innerSub.unsubscribe(); innerSub = null; subscribeForRetry(); } else { syncUnsub = true; } }; if (delay != null) { var notifier = typeof delay === "number" ? timer(delay) : innerFrom(delay(err, soFar)); var notifierSubscriber_1 = createOperatorSubscriber(subscriber, function () { notifierSubscriber_1.unsubscribe(); resub_1(); }, function () { subscriber.complete(); }); notifier.subscribe(notifierSubscriber_1); } else { resub_1(); } } else { subscriber.error(err); } })); if (syncUnsub) { innerSub.unsubscribe(); innerSub = null; subscribeForRetry(); } }; subscribeForRetry(); }); } function sample(notifier) { return operate(function (source, subscriber) { var hasValue = false; var lastValue = null; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; lastValue = value; })); innerFrom(notifier).subscribe(createOperatorSubscriber(subscriber, function () { if (hasValue) { hasValue = false; var value = lastValue; lastValue = null; subscriber.next(value); } }, noop)); }); } function scan(accumulator, seed) { return operate(scanInternals(accumulator, seed, arguments.length >= 2, true)); } function share(options) { if (options === void 0) { options = {}; } var _a = options.connector, connector = _a === void 0 ? function () { return new Subject(); } : _a, _b = options.resetOnError, resetOnError = _b === void 0 ? true : _b, _c = options.resetOnComplete, resetOnComplete = _c === void 0 ? true : _c, _d = options.resetOnRefCountZero, resetOnRefCountZero = _d === void 0 ? true : _d; return function (wrapperSource) { var connection; var resetConnection; var subject; var refCount = 0; var hasCompleted = false; var hasErrored = false; var cancelReset = function () { resetConnection === null || resetConnection === void 0 ? void 0 : resetConnection.unsubscribe(); resetConnection = undefined; }; var reset = function () { cancelReset(); connection = subject = undefined; hasCompleted = hasErrored = false; }; var resetAndUnsubscribe = function () { var conn = connection; reset(); conn === null || conn === void 0 ? void 0 : conn.unsubscribe(); }; return operate(function (source, subscriber) { refCount++; if (!hasErrored && !hasCompleted) { cancelReset(); } var dest = (subject = subject !== null && subject !== void 0 ? subject : connector()); subscriber.add(function () { refCount--; if (refCount === 0 && !hasErrored && !hasCompleted) { resetConnection = handleReset(resetAndUnsubscribe, resetOnRefCountZero); } }); dest.subscribe(subscriber); if (!connection && refCount > 0) { connection = new SafeSubscriber({ next: function (value) { return dest.next(value); }, error: function (err) { hasErrored = true; cancelReset(); resetConnection = handleReset(reset, resetOnError, err); dest.error(err); }, complete: function () { hasCompleted = true; cancelReset(); resetConnection = handleReset(reset, resetOnComplete); dest.complete(); }, }); innerFrom(source).subscribe(connection); } })(wrapperSource); }; } function handleReset(reset, on) { var args = []; for (var _i = 2; _i < arguments.length; _i++) { args[_i - 2] = arguments[_i]; } if (on === true) { reset(); return; } if (on === false) { return; } var onSubscriber = new SafeSubscriber({ next: function () { onSubscriber.unsubscribe(); reset(); }, }); return innerFrom(on.apply(void 0, __spreadArray([], __read(args)))).subscribe(onSubscriber); } function skip(count) { return filter(function (_, index) { return count <= index; }); } function skipWhile(predicate) { return operate(function (source, subscriber) { var taking = false; var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { return (taking || (taking = !predicate(value, index++))) && subscriber.next(value); })); }); } function startWith() { var values = []; for (var _i = 0; _i < arguments.length; _i++) { values[_i] = arguments[_i]; } var scheduler = popScheduler(values); return operate(function (source, subscriber) { (scheduler ? concat(values, source, scheduler) : concat(values, source)).subscribe(subscriber); }); } function switchMap(project, resultSelector) { return operate(function (source, subscriber) { var innerSubscriber = null; var index = 0; var isComplete = false; var checkComplete = function () { return isComplete && !innerSubscriber && subscriber.complete(); }; source.subscribe(createOperatorSubscriber(subscriber, function (value) { innerSubscriber === null || innerSubscriber === void 0 ? void 0 : innerSubscriber.unsubscribe(); var innerIndex = 0; var outerIndex = index++; innerFrom(project(value, outerIndex)).subscribe((innerSubscriber = createOperatorSubscriber(subscriber, function (innerValue) { return subscriber.next(resultSelector ? resultSelector(value, innerValue, outerIndex, innerIndex++) : innerValue); }, function () { innerSubscriber = null; checkComplete(); }))); }, function () { isComplete = true; checkComplete(); })); }); } function takeUntil(notifier) { return operate(function (source, subscriber) { innerFrom(notifier).subscribe(createOperatorSubscriber(subscriber, function () { return subscriber.complete(); }, noop)); !subscriber.closed && source.subscribe(subscriber); }); } function takeWhile(predicate, inclusive) { if (inclusive === void 0) { inclusive = false; } return operate(function (source, subscriber) { var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var result = predicate(value, index++); (result || inclusive) && subscriber.next(value); !result && subscriber.complete(); })); }); } function tap(observerOrNext, error, complete) { var tapObserver = isFunction(observerOrNext) || error || complete ? { next: observerOrNext, error: error, complete: complete } : observerOrNext; return tapObserver ? operate(function (source, subscriber) { var _a; (_a = tapObserver.subscribe) === null || _a === void 0 ? void 0 : _a.call(tapObserver); var isUnsub = true; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var _a; (_a = tapObserver.next) === null || _a === void 0 ? void 0 : _a.call(tapObserver, value); subscriber.next(value); }, function () { var _a; isUnsub = false; (_a = tapObserver.complete) === null || _a === void 0 ? void 0 : _a.call(tapObserver); subscriber.complete(); }, function (err) { var _a; isUnsub = false; (_a = tapObserver.error) === null || _a === void 0 ? void 0 : _a.call(tapObserver, err); subscriber.error(err); }, function () { var _a, _b; if (isUnsub) { (_a = tapObserver.unsubscribe) === null || _a === void 0 ? void 0 : _a.call(tapObserver); } (_b = tapObserver.finalize) === null || _b === void 0 ? void 0 : _b.call(tapObserver); })); }) : identity; } function withLatestFrom() { var inputs = []; for (var _i = 0; _i < arguments.length; _i++) { inputs[_i] = arguments[_i]; } var project = popResultSelector(inputs); return operate(function (source, subscriber) { var len = inputs.length; var otherValues = new Array(len); var hasValue = inputs.map(function () { return false; }); var ready = false; var _loop_1 = function (i) { innerFrom(inputs[i]).subscribe(createOperatorSubscriber(subscriber, function (value) { otherValues[i] = value; if (!ready && !hasValue[i]) { hasValue[i] = true; (ready = hasValue.every(identity)) && (hasValue = null); } }, noop)); }; for (var i = 0; i < len; i++) { _loop_1(i); } source.subscribe(createOperatorSubscriber(subscriber, function (value) { if (ready) { var values = __spreadArray([value], __read(otherValues)); subscriber.next(project ? project.apply(void 0, __spreadArray([], __read(values))) : values); } })); }); } /** * @class Filter * * @classdesc Represents a class for creating image filters. Implementation and * definitions based on https://github.com/mapbox/feature-filter. */ class FilterCreator { /** * Create a filter from a filter expression. * * @description The following filters are supported: * * Comparison * `==` * `!=` * `<` * `<=` * `>` * `>=` * * Set membership * `in` * `!in` * * Combining * `all` * * @param {FilterExpression} filter - Comparison, set membership or combinding filter * expression. * @returns {FilterFunction} Function taking a image and returning a boolean that * indicates whether the image passed the test or not. */ createFilter(filter) { return new Function("node", "return " + this._compile(filter) + ";"); } _compile(filter) { if (filter == null || filter.length <= 1) { return "true"; } const operator = filter[0]; const operation = operator === "==" ? this._compileComparisonOp("===", filter[1], filter[2], false) : operator === "!=" ? this._compileComparisonOp("!==", filter[1], filter[2], false) : operator === ">" || operator === ">=" || operator === "<" || operator === "<=" ? this._compileComparisonOp(operator, filter[1], filter[2], true) : operator === "in" ? this._compileInOp(filter[1], filter.slice(2)) : operator === "!in" ? this._compileNegation(this._compileInOp(filter[1], filter.slice(2))) : operator === "all" ? this._compileLogicalOp(filter.slice(1), "&&") : "true"; return "(" + operation + ")"; } _compare(a, b) { return a < b ? -1 : a > b ? 1 : 0; } _compileComparisonOp(operator, property, value, checkType) { const left = this._compilePropertyReference(property); const right = JSON.stringify(value); return (checkType ? "typeof " + left + "===typeof " + right + "&&" : "") + left + operator + right; } _compileInOp(property, values) { const compare = this._compare; const left = JSON.stringify(values.sort(compare)); const right = this._compilePropertyReference(property); return left + ".indexOf(" + right + ")!==-1"; } _compileLogicalOp(filters, operator) { const compile = this._compile.bind(this); return filters.map(compile).join(operator); } _compileNegation(expression) { return "!(" + expression + ")"; } _compilePropertyReference(property) { return "node[" + JSON.stringify(property) + "]"; } } /** * @license * Copyright 2010-2023 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = "152"; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const RED_RGTC1_Format = 36283; const SIGNED_RED_RGTC1_Format = 36284; const RED_GREEN_RGTC2_Format = 36285; const SIGNED_RED_GREEN_RGTC2_Format = 36286; /** @deprecated Use LinearSRGBColorSpace or NoColorSpace in three.js r152+. */ const LinearEncoding = 3000; /** @deprecated Use SRGBColorSpace in three.js r152+. */ const sRGBEncoding = 3001; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; // Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. const NoColorSpace = ""; const SRGBColorSpace = "srgb"; const LinearSRGBColorSpace = "srgb-linear"; const DisplayP3ColorSpace = "display-p3"; const KeepStencilOp = 7680; const AlwaysStencilFunc = 519; const StaticDrawUsage = 35044; const GLSL3 = "300 es"; const _SRGBAFormat = 1035; // fallback for WebGL 1 /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; const listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } } hasEventListener( type, listener ) { if ( this._listeners === undefined ) return false; const listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; } removeEventListener( type, listener ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { const index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } } dispatchEvent( event ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice( 0 ); for ( let i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } event.target = null; } } } const _lut = [ "00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "0a", "0b", "0c", "0d", "0e", "0f", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "1a", "1b", "1c", "1d", "1e", "1f", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "2a", "2b", "2c", "2d", "2e", "2f", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "3a", "3b", "3c", "3d", "3e", "3f", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "4a", "4b", "4c", "4d", "4e", "4f", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "5a", "5b", "5c", "5d", "5e", "5f", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "6a", "6b", "6c", "6d", "6e", "6f", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "7a", "7b", "7c", "7d", "7e", "7f", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "8a", "8b", "8c", "8d", "8e", "8f", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "9a", "9b", "9c", "9d", "9e", "9f", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "aa", "ab", "ac", "ad", "ae", "af", "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8", "b9", "ba", "bb", "bc", "bd", "be", "bf", "c0", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "ca", "cb", "cc", "cd", "ce", "cf", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "da", "db", "dc", "dd", "de", "df", "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9", "ea", "eb", "ec", "ed", "ee", "ef", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "fa", "fb", "fc", "fd", "fe", "ff" ]; let _seed = 1234567; const DEG2RAD$1 = Math.PI / 180; const RAD2DEG$1 = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + "-" + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + "-" + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + "-" + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + "-" + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase(); } function clamp$1( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } // compute euclidean modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo( n, m ) { return ( ( n % m ) + m ) % m; } // Linear mapping from range to range
function mapLinear( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
}
// https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
function inverseLerp( x, y, value ) {
if ( x !== y ) {
return ( value - x ) / ( y - x );
} else {
return 0;
}
}
// https://en.wikipedia.org/wiki/Linear_interpolation
function lerp( x, y, t ) {
return ( 1 - t ) * x + t * y;
}
// http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
function damp( x, y, lambda, dt ) {
return lerp( x, y, 1 - Math.exp( - lambda * dt ) );
}
// https://www.desmos.com/calculator/vcsjnyz7x4
function pingpong( x, length = 1 ) {
return length - Math.abs( euclideanModulo( x, length * 2 ) - length );
}
// http://en.wikipedia.org/wiki/Smoothstep
function smoothstep( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
}
function smootherstep( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
}
// Random integer from interval
function randInt( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
}
// Random float from interval
function randFloat( low, high ) {
return low + Math.random() * ( high - low );
}
// Random float from <-range/2, range/2> interval
function randFloatSpread( range ) {
return range * ( 0.5 - Math.random() );
}
// Deterministic pseudo-random float in the interval [ 0, 1 ]
function seededRandom( s ) {
if ( s !== undefined ) _seed = s;
// Mulberry32 generator
let t = _seed += 0x6D2B79F5;
t = Math.imul( t ^ t >>> 15, t | 1 );
t ^= t + Math.imul( t ^ t >>> 7, t | 61 );
return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296;
}
function degToRad( degrees ) {
return degrees * DEG2RAD$1;
}
function radToDeg( radians ) {
return radians * RAD2DEG$1;
}
function isPowerOfTwo( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
}
function ceilPowerOfTwo( value ) {
return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );
}
function floorPowerOfTwo( value ) {
return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );
}
function setQuaternionFromProperEuler( q, a, b, c, order ) {
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
// rotations are applied to the axes in the order specified by "order"
// rotation by angle "a" is applied first, then by angle "b", then by angle "c"
// angles are in radians
const cos = Math.cos;
const sin = Math.sin;
const c2 = cos( b / 2 );
const s2 = sin( b / 2 );
const c13 = cos( ( a + c ) / 2 );
const s13 = sin( ( a + c ) / 2 );
const c1_3 = cos( ( a - c ) / 2 );
const s1_3 = sin( ( a - c ) / 2 );
const c3_1 = cos( ( c - a ) / 2 );
const s3_1 = sin( ( c - a ) / 2 );
switch ( order ) {
case "XYX":
q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
break;
case "YZY":
q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
break;
case "ZXZ":
q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
break;
case "XZX":
q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
break;
case "YXY":
q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
break;
case "ZYZ":
q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
break;
default:
console.warn( "THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: " + order );
}
}
function denormalize( value, array ) {
switch ( array.constructor ) {
case Float32Array:
return value;
case Uint16Array:
return value / 65535.0;
case Uint8Array:
return value / 255.0;
case Int16Array:
return Math.max( value / 32767.0, - 1.0 );
case Int8Array:
return Math.max( value / 127.0, - 1.0 );
default:
throw new Error( "Invalid component type." );
}
}
function normalize( value, array ) {
switch ( array.constructor ) {
case Float32Array:
return value;
case Uint16Array:
return Math.round( value * 65535.0 );
case Uint8Array:
return Math.round( value * 255.0 );
case Int16Array:
return Math.round( value * 32767.0 );
case Int8Array:
return Math.round( value * 127.0 );
default:
throw new Error( "Invalid component type." );
}
}
const MathUtils = {
DEG2RAD: DEG2RAD$1,
RAD2DEG: RAD2DEG$1,
generateUUID: generateUUID,
clamp: clamp$1,
euclideanModulo: euclideanModulo,
mapLinear: mapLinear,
inverseLerp: inverseLerp,
lerp: lerp,
damp: damp,
pingpong: pingpong,
smoothstep: smoothstep,
smootherstep: smootherstep,
randInt: randInt,
randFloat: randFloat,
randFloatSpread: randFloatSpread,
seededRandom: seededRandom,
degToRad: degToRad,
radToDeg: radToDeg,
isPowerOfTwo: isPowerOfTwo,
ceilPowerOfTwo: ceilPowerOfTwo,
floorPowerOfTwo: floorPowerOfTwo,
setQuaternionFromProperEuler: setQuaternionFromProperEuler,
normalize: normalize,
denormalize: denormalize
};
class Vector2 {
constructor( x = 0, y = 0 ) {
Vector2.prototype.isVector2 = true;
this.x = x;
this.y = y;
}
get width() {
return this.x;
}
set width( value ) {
this.x = value;
}
get height() {
return this.y;
}
set height( value ) {
this.y = value;
}
set( x, y ) {
this.x = x;
this.y = y;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( "index is out of range: " + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( "index is out of range: " + index );
}
}
clone() {
return new this.constructor( this.x, this.y );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
applyMatrix3( m ) {
const x = this.x, y = this.y;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
}
roundToZero() {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y;
}
cross( v ) {
return this.x * v.y - this.y * v.x;
}
lengthSq() {
return this.x * this.x + this.y * this.y;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
angle() {
// computes the angle in radians with respect to the positive x-axis
const angle = Math.atan2( - this.y, - this.x ) + Math.PI;
return angle;
}
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp$1( theta, - 1, 1 ) );
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
}
rotateAround( center, angle ) {
const c = Math.cos( angle ), s = Math.sin( angle );
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
}
}
class Matrix3 {
constructor() {
Matrix3.prototype.isMatrix3 = true;
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
}
set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
}
identity() {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrix3Column( this, 0 );
yAxis.setFromMatrix3Column( this, 1 );
zAxis.setFromMatrix3Column( this, 2 );
return this;
}
setFromMatrix4( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
}
multiply( m ) {
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
}
invert() {
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ],
n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ],
n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
}
transpose() {
let tmp;
const m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
}
getNormalMatrix( matrix4 ) {
return this.setFromMatrix4( matrix4 ).invert().transpose();
}
transposeIntoArray( r ) {
const m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
}
setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) {
const c = Math.cos( rotation );
const s = Math.sin( rotation );
this.set(
sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
0, 0, 1
);
return this;
}
//
scale( sx, sy ) {
this.premultiply( _m3.makeScale( sx, sy ) );
return this;
}
rotate( theta ) {
this.premultiply( _m3.makeRotation( - theta ) );
return this;
}
translate( tx, ty ) {
this.premultiply( _m3.makeTranslation( tx, ty ) );
return this;
}
// for 2D Transforms
makeTranslation( x, y ) {
this.set(
1, 0, x,
0, 1, y,
0, 0, 1
);
return this;
}
makeRotation( theta ) {
// counterclockwise
const c = Math.cos( theta );
const s = Math.sin( theta );
this.set(
c, - s, 0,
s, c, 0,
0, 0, 1
);
return this;
}
makeScale( x, y ) {
this.set(
x, 0, 0,
0, y, 0,
0, 0, 1
);
return this;
}
//
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
clone() {
return new this.constructor().fromArray( this.elements );
}
}
const _m3 = /*@__PURE__*/ new Matrix3();
function arrayNeedsUint32( array ) {
// assumes larger values usually on last
for ( let i = array.length - 1; i >= 0; -- i ) {
if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565
}
return false;
}
function createElementNS( name ) {
return document.createElementNS( "http://www.w3.org/1999/xhtml", name );
}
const _cache = {};
function warnOnce( message ) {
if ( message in _cache ) return;
_cache[ message ] = true;
console.warn( message );
}
function SRGBToLinear( c ) {
return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
}
function LinearToSRGB( c ) {
return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;
}
/**
* Matrices converting P3 <-> Rec. 709 primaries, without gamut mapping
* or clipping. Based on W3C specifications for sRGB and Display P3,
* and ICC specifications for the D50 connection space. Values in/out
* are _linear_ sRGB and _linear_ Display P3.
*
* Note that both sRGB and Display P3 use the sRGB transfer functions.
*
* Reference:
* - http://www.russellcottrell.com/photo/matrixCalculator.htm
*/
const LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = /*@__PURE__*/ new Matrix3().fromArray( [
0.8224621, 0.0331941, 0.0170827,
0.1775380, 0.9668058, 0.0723974,
- 0.0000001, 0.0000001, 0.9105199
] );
const LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = /*@__PURE__*/ new Matrix3().fromArray( [
1.2249401, - 0.0420569, - 0.0196376,
- 0.2249404, 1.0420571, - 0.0786361,
0.0000001, 0.0000000, 1.0982735
] );
function DisplayP3ToLinearSRGB( color ) {
// Display P3 uses the sRGB transfer functions
return color.convertSRGBToLinear().applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB );
}
function LinearSRGBToDisplayP3( color ) {
// Display P3 uses the sRGB transfer functions
return color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ).convertLinearToSRGB();
}
// Conversions from to Linear-sRGB reference space.
const TO_LINEAR = {
[ LinearSRGBColorSpace ]: ( color ) => color,
[ SRGBColorSpace ]: ( color ) => color.convertSRGBToLinear(),
[ DisplayP3ColorSpace ]: DisplayP3ToLinearSRGB,
};
// Conversions to from Linear-sRGB reference space.
const FROM_LINEAR = {
[ LinearSRGBColorSpace ]: ( color ) => color,
[ SRGBColorSpace ]: ( color ) => color.convertLinearToSRGB(),
[ DisplayP3ColorSpace ]: LinearSRGBToDisplayP3,
};
const ColorManagement = {
enabled: true,
get legacyMode() {
console.warn( "THREE.ColorManagement: .legacyMode=false renamed to .enabled=true in r150." );
return ! this.enabled;
},
set legacyMode( legacyMode ) {
console.warn( "THREE.ColorManagement: .legacyMode=false renamed to .enabled=true in r150." );
this.enabled = ! legacyMode;
},
get workingColorSpace() {
return LinearSRGBColorSpace;
},
set workingColorSpace( colorSpace ) {
console.warn( "THREE.ColorManagement: .workingColorSpace is readonly." );
},
convert: function ( color, sourceColorSpace, targetColorSpace ) {
if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) {
return color;
}
const sourceToLinear = TO_LINEAR[ sourceColorSpace ];
const targetFromLinear = FROM_LINEAR[ targetColorSpace ];
if ( sourceToLinear === undefined || targetFromLinear === undefined ) {
throw new Error( `Unsupported color space conversion, "${ sourceColorSpace }" to "${ targetColorSpace }".` );
}
return targetFromLinear( sourceToLinear( color ) );
},
fromWorkingColorSpace: function ( color, targetColorSpace ) {
return this.convert( color, this.workingColorSpace, targetColorSpace );
},
toWorkingColorSpace: function ( color, sourceColorSpace ) {
return this.convert( color, sourceColorSpace, this.workingColorSpace );
},
};
let _canvas;
class ImageUtils {
static getDataURL( image ) {
if ( /^data:/i.test( image.src ) ) {
return image.src;
}
if ( typeof HTMLCanvasElement === "undefined" ) {
return image.src;
}
let canvas;
if ( image instanceof HTMLCanvasElement ) {
canvas = image;
} else {
if ( _canvas === undefined ) _canvas = createElementNS( "canvas" );
_canvas.width = image.width;
_canvas.height = image.height;
const context = _canvas.getContext( "2d" );
if ( image instanceof ImageData ) {
context.putImageData( image, 0, 0 );
} else {
context.drawImage( image, 0, 0, image.width, image.height );
}
canvas = _canvas;
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
console.warn( "THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons", image );
return canvas.toDataURL( "image/jpeg", 0.6 );
} else {
return canvas.toDataURL( "image/png" );
}
}
static sRGBToLinear( image ) {
if ( ( typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap ) ) {
const canvas = createElementNS( "canvas" );
canvas.width = image.width;
canvas.height = image.height;
const context = canvas.getContext( "2d" );
context.drawImage( image, 0, 0, image.width, image.height );
const imageData = context.getImageData( 0, 0, image.width, image.height );
const data = imageData.data;
for ( let i = 0; i < data.length; i ++ ) {
data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255;
}
context.putImageData( imageData, 0, 0 );
return canvas;
} else if ( image.data ) {
const data = image.data.slice( 0 );
for ( let i = 0; i < data.length; i ++ ) {
if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) {
data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 );
} else {
// assuming float
data[ i ] = SRGBToLinear( data[ i ] );
}
}
return {
data: data,
width: image.width,
height: image.height
};
} else {
console.warn( "THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied." );
return image;
}
}
}
class Source {
constructor( data = null ) {
this.isSource = true;
this.uuid = generateUUID();
this.data = data;
this.version = 0;
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === "string" );
if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) {
return meta.images[ this.uuid ];
}
const output = {
uuid: this.uuid,
url: ""
};
const data = this.data;
if ( data !== null ) {
let url;
if ( Array.isArray( data ) ) {
// cube texture
url = [];
for ( let i = 0, l = data.length; i < l; i ++ ) {
if ( data[ i ].isDataTexture ) {
url.push( serializeImage( data[ i ].image ) );
} else {
url.push( serializeImage( data[ i ] ) );
}
}
} else {
// texture
url = serializeImage( data );
}
output.url = url;
}
if ( ! isRootObject ) {
meta.images[ this.uuid ] = output;
}
return output;
}
}
function serializeImage( image ) {
if ( ( typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap ) ) {
// default images
return ImageUtils.getDataURL( image );
} else {
if ( image.data ) {
// images of DataTexture
return {
data: Array.from( image.data ),
width: image.width,
height: image.height,
type: image.data.constructor.name
};
} else {
console.warn( "THREE.Texture: Unable to serialize Texture." );
return {};
}
}
}
let textureId = 0;
class Texture extends EventDispatcher {
constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) {
super();
this.isTexture = true;
Object.defineProperty( this, "id", { value: textureId ++ } );
this.uuid = generateUUID();
this.name = "";
this.source = new Source( image );
this.mipmaps = [];
this.mapping = mapping;
this.channel = 0;
this.wrapS = wrapS;
this.wrapT = wrapT;
this.magFilter = magFilter;
this.minFilter = minFilter;
this.anisotropy = anisotropy;
this.format = format;
this.internalFormat = null;
this.type = type;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.center = new Vector2( 0, 0 );
this.rotation = 0;
this.matrixAutoUpdate = true;
this.matrix = new Matrix3();
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
if ( typeof colorSpace === "string" ) {
this.colorSpace = colorSpace;
} else { // @deprecated, r152
warnOnce( "THREE.Texture: Property .encoding has been replaced by .colorSpace." );
this.colorSpace = colorSpace === sRGBEncoding ? SRGBColorSpace : NoColorSpace;
}
this.userData = {};
this.version = 0;
this.onUpdate = null;
this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not
this.needsPMREMUpdate = false; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures)
}
get image() {
return this.source.data;
}
set image( value = null ) {
this.source.data = value;
}
updateMatrix() {
this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.source = source.source;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.channel = source.channel;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.internalFormat = source.internalFormat;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.center.copy( source.center );
this.rotation = source.rotation;
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrix.copy( source.matrix );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.colorSpace = source.colorSpace;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
this.needsUpdate = true;
return this;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === "string" );
if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
const output = {
metadata: {
version: 4.5,
type: "Texture",
generator: "Texture.toJSON"
},
uuid: this.uuid,
name: this.name,
image: this.source.toJSON( meta ).uuid,
mapping: this.mapping,
channel: this.channel,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
center: [ this.center.x, this.center.y ],
rotation: this.rotation,
wrap: [ this.wrapS, this.wrapT ],
format: this.format,
internalFormat: this.internalFormat,
type: this.type,
colorSpace: this.colorSpace,
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY,
generateMipmaps: this.generateMipmaps,
premultiplyAlpha: this.premultiplyAlpha,
unpackAlignment: this.unpackAlignment
};
if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData;
if ( ! isRootObject ) {
meta.textures[ this.uuid ] = output;
}
return output;
}
dispose() {
this.dispatchEvent( { type: "dispose" } );
}
transformUv( uv ) {
if ( this.mapping !== UVMapping ) return uv;
uv.applyMatrix3( this.matrix );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
return uv;
}
set needsUpdate( value ) {
if ( value === true ) {
this.version ++;
this.source.needsUpdate = true;
}
}
get encoding() { // @deprecated, r152
warnOnce( "THREE.Texture: Property .encoding has been replaced by .colorSpace." );
return this.colorSpace === SRGBColorSpace ? sRGBEncoding : LinearEncoding;
}
set encoding( encoding ) { // @deprecated, r152
warnOnce( "THREE.Texture: Property .encoding has been replaced by .colorSpace." );
this.colorSpace = encoding === sRGBEncoding ? SRGBColorSpace : NoColorSpace;
}
}
Texture.DEFAULT_IMAGE = null;
Texture.DEFAULT_MAPPING = UVMapping;
Texture.DEFAULT_ANISOTROPY = 1;
class Vector4 {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
Vector4.prototype.isVector4 = true;
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
get width() {
return this.z;
}
set width( value ) {
this.z = value;
}
get height() {
return this.w;
}
set height( value ) {
this.w = value;
}
set( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setW( w ) {
this.w = w;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( "index is out of range: " + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( "index is out of range: " + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z, this.w );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
this.w *= v.w;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z, w = this.w;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
setAxisAngleFromQuaternion( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
const s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
}
setAxisAngleFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
let angle, x, y, z; // variables for result
const epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
const xx = ( m11 + 1 ) / 2;
const yy = ( m22 + 1 ) / 2;
const zz = ( m33 + 1 ) / 2;
const xy = ( m12 + m21 ) / 4;
const xz = ( m13 + m31 ) / 4;
const yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I"ve left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
this.w = Math.max( minVal, Math.min( maxVal, this.w ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
}
roundToZero() {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
}
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
this.w = v1.w + ( v2.w - v1.w ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
this.w = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
yield this.z;
yield this.w;
}
}
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
class WebGLRenderTarget extends EventDispatcher {
constructor( width = 1, height = 1, options = {} ) {
super();
this.isWebGLRenderTarget = true;
this.width = width;
this.height = height;
this.depth = 1;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
const image = { width: width, height: height, depth: 1 };
if ( options.encoding !== undefined ) {
// @deprecated, r152
warnOnce( "THREE.WebGLRenderTarget: option.encoding has been replaced by option.colorSpace." );
options.colorSpace = options.encoding === sRGBEncoding ? SRGBColorSpace : NoColorSpace;
}
this.texture = new Texture( image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace );
this.texture.isRenderTargetTexture = true;
this.texture.flipY = false;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
this.samples = options.samples !== undefined ? options.samples : 0;
}
setSize( width, height, depth = 1 ) {
if ( this.width !== width || this.height !== height || this.depth !== depth ) {
this.width = width;
this.height = height;
this.depth = depth;
this.texture.image.width = width;
this.texture.image.height = height;
this.texture.image.depth = depth;
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.width = source.width;
this.height = source.height;
this.depth = source.depth;
this.scissor.copy( source.scissor );
this.scissorTest = source.scissorTest;
this.viewport.copy( source.viewport );
this.texture = source.texture.clone();
this.texture.isRenderTargetTexture = true;
// ensure image object is not shared, see #20328
const image = Object.assign( {}, source.texture.image );
this.texture.source = new Source( image );
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
if ( source.depthTexture !== null ) this.depthTexture = source.depthTexture.clone();
this.samples = source.samples;
return this;
}
dispose() {
this.dispatchEvent( { type: "dispose" } );
}
}
class DataArrayTexture extends Texture {
constructor( data = null, width = 1, height = 1, depth = 1 ) {
super( null );
this.isDataArrayTexture = true;
this.image = { data, width, height, depth };
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
}
}
class Data3DTexture extends Texture {
constructor( data = null, width = 1, height = 1, depth = 1 ) {
// We"re going to add .setXXX() methods for setting properties later.
// Users can still set in DataTexture3D directly.
//
// const texture = new THREE.DataTexture3D( data, width, height, depth );
// texture.anisotropy = 16;
//
// See #14839
super( null );
this.isData3DTexture = true;
this.image = { data, width, height, depth };
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
}
}
class Quaternion {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
this.isQuaternion = true;
this._x = x;
this._y = y;
this._z = z;
this._w = w;
}
static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
let x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( t === 0 ) {
dst[ dstOffset + 0 ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
return;
}
if ( t === 1 ) {
dst[ dstOffset + 0 ] = x1;
dst[ dstOffset + 1 ] = y1;
dst[ dstOffset + 2 ] = z1;
dst[ dstOffset + 3 ] = w1;
return;
}
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
let s = 1 - t;
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
const sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
const tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {
const x0 = src0[ srcOffset0 ];
const y0 = src0[ srcOffset0 + 1 ];
const z0 = src0[ srcOffset0 + 2 ];
const w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 ];
const y1 = src1[ srcOffset1 + 1 ];
const z1 = src1[ srcOffset1 + 2 ];
const w1 = src1[ srcOffset1 + 3 ];
dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
return dst;
}
get x() {
return this._x;
}
set x( value ) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y( value ) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z( value ) {
this._z = value;
this._onChangeCallback();
}
get w() {
return this._w;
}
set w( value ) {
this._w = value;
this._onChangeCallback();
}
set( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor( this._x, this._y, this._z, this._w );
}
copy( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this._onChangeCallback();
return this;
}
setFromEuler( euler, update ) {
const x = euler._x, y = euler._y, z = euler._z, order = euler._order;
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
const cos = Math.cos;
const sin = Math.sin;
const c1 = cos( x / 2 );
const c2 = cos( y / 2 );
const c3 = cos( z / 2 );
const s1 = sin( x / 2 );
const s2 = sin( y / 2 );
const s3 = sin( z / 2 );
switch ( order ) {
case "XYZ":
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case "YXZ":
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case "ZXY":
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case "ZYX":
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case "YZX":
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case "XZY":
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
default:
console.warn( "THREE.Quaternion: .setFromEuler() encountered an unknown order: " + order );
}
if ( update !== false ) this._onChangeCallback();
return this;
}
setFromAxisAngle( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
const halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this._onChangeCallback();
return this;
}
setFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33;
if ( trace > 0 ) {
const s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this._onChangeCallback();
return this;
}
setFromUnitVectors( vFrom, vTo ) {
// assumes direction vectors vFrom and vTo are normalized
let r = vFrom.dot( vTo ) + 1;
if ( r < Number.EPSILON ) {
// vFrom and vTo point in opposite directions
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
this._x = - vFrom.y;
this._y = vFrom.x;
this._z = 0;
this._w = r;
} else {
this._x = 0;
this._y = - vFrom.z;
this._z = vFrom.y;
this._w = r;
}
} else {
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
this._w = r;
}
return this.normalize();
}
angleTo( q ) {
return 2 * Math.acos( Math.abs( clamp$1( this.dot( q ), - 1, 1 ) ) );
}
rotateTowards( q, step ) {
const angle = this.angleTo( q );
if ( angle === 0 ) return this;
const t = Math.min( 1, step / angle );
this.slerp( q, t );
return this;
}
identity() {
return this.set( 0, 0, 0, 1 );
}
invert() {
// quaternion is assumed to have unit length
return this.conjugate();
}
conjugate() {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this._onChangeCallback();
return this;
}
dot( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
}
lengthSq() {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
}
length() {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
}
normalize() {
let l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this._onChangeCallback();
return this;
}
multiply( q ) {
return this.multiplyQuaternions( this, q );
}
premultiply( q ) {
return this.multiplyQuaternions( q, this );
}
multiplyQuaternions( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this._onChangeCallback();
return this;
}
slerp( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
const x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
if ( sqrSinHalfTheta <= Number.EPSILON ) {
const s = 1 - t;
this._w = s * w + t * this._w;
this._x = s * x + t * this._x;
this._y = s * y + t * this._y;
this._z = s * z + t * this._z;
this.normalize();
this._onChangeCallback();
return this;
}
const sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this._onChangeCallback();
return this;
}
slerpQuaternions( qa, qb, t ) {
return this.copy( qa ).slerp( qb, t );
}
random() {
// Derived from http://planning.cs.uiuc.edu/node198.html
// Note, this source uses w, x, y, z ordering,
// so we swap the order below.
const u1 = Math.random();
const sqrt1u1 = Math.sqrt( 1 - u1 );
const sqrtu1 = Math.sqrt( u1 );
const u2 = 2 * Math.PI * Math.random();
const u3 = 2 * Math.PI * Math.random();
return this.set(
sqrt1u1 * Math.cos( u2 ),
sqrtu1 * Math.sin( u3 ),
sqrtu1 * Math.cos( u3 ),
sqrt1u1 * Math.sin( u2 ),
);
}
equals( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
}
fromArray( array, offset = 0 ) {
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this._onChangeCallback();
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
}
fromBufferAttribute( attribute, index ) {
this._x = attribute.getX( index );
this._y = attribute.getY( index );
this._z = attribute.getZ( index );
this._w = attribute.getW( index );
return this;
}
toJSON() {
return this.toArray();
}
_onChange( callback ) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
*[ Symbol.iterator ]() {
yield this._x;
yield this._y;
yield this._z;
yield this._w;
}
}
class Vector3 {
constructor( x = 0, y = 0, z = 0 ) {
Vector3.prototype.isVector3 = true;
this.x = x;
this.y = y;
this.z = z;
}
set( x, y, z ) {
if ( z === undefined ) z = this.z; // sprite.scale.set(x,y)
this.x = x;
this.y = y;
this.z = z;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( "index is out of range: " + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( "index is out of range: " + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
}
multiplyVectors( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
}
applyEuler( euler ) {
return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) );
}
applyAxisAngle( axis, angle ) {
return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) );
}
applyMatrix3( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
}
applyNormalMatrix( m ) {
return this.applyMatrix3( m ).normalize();
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
}
applyQuaternion( q ) {
const x = this.x, y = this.y, z = this.z;
const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// calculate quat * vector
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = - qx * x - qy * y - qz * z;
// calculate result * inverse quat
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
return this;
}
project( camera ) {
return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );
}
unproject( camera ) {
return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );
}
transformDirection( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
}
roundToZero() {
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
}
// TODO lengthSquared?
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
return this;
}
cross( v ) {
return this.crossVectors( this, v );
}
crossVectors( a, b ) {
const ax = a.x, ay = a.y, az = a.z;
const bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
}
projectOnVector( v ) {
const denominator = v.lengthSq();
if ( denominator === 0 ) return this.set( 0, 0, 0 );
const scalar = v.dot( this ) / denominator;
return this.copy( v ).multiplyScalar( scalar );
}
projectOnPlane( planeNormal ) {
_vector$b.copy( this ).projectOnVector( planeNormal );
return this.sub( _vector$b );
}
reflect( normal ) {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
return this.sub( _vector$b.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
}
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp$1( theta, - 1, 1 ) );
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
}
setFromSpherical( s ) {
return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
}
setFromSphericalCoords( radius, phi, theta ) {
const sinPhiRadius = Math.sin( phi ) * radius;
this.x = sinPhiRadius * Math.sin( theta );
this.y = Math.cos( phi ) * radius;
this.z = sinPhiRadius * Math.cos( theta );
return this;
}
setFromCylindrical( c ) {
return this.setFromCylindricalCoords( c.radius, c.theta, c.y );
}
setFromCylindricalCoords( radius, theta, y ) {
this.x = radius * Math.sin( theta );
this.y = y;
this.z = radius * Math.cos( theta );
return this;
}
setFromMatrixPosition( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
}
setFromMatrixScale( m ) {
const sx = this.setFromMatrixColumn( m, 0 ).length();
const sy = this.setFromMatrixColumn( m, 1 ).length();
const sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
}
setFromMatrixColumn( m, index ) {
return this.fromArray( m.elements, index * 4 );
}
setFromMatrix3Column( m, index ) {
return this.fromArray( m.elements, index * 3 );
}
setFromEuler( e ) {
this.x = e._x;
this.y = e._y;
this.z = e._z;
return this;
}
setFromColor( c ) {
this.x = c.r;
this.y = c.g;
this.z = c.b;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
return this;
}
randomDirection() {
// Derived from https://mathworld.wolfram.com/SpherePointPicking.html
const u = ( Math.random() - 0.5 ) * 2;
const t = Math.random() * Math.PI * 2;
const f = Math.sqrt( 1 - u ** 2 );
this.x = f * Math.cos( t );
this.y = f * Math.sin( t );
this.z = u;
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
yield this.z;
}
}
const _vector$b = /*@__PURE__*/ new Vector3();
const _quaternion$4 = /*@__PURE__*/ new Quaternion();
class Box3 {
constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) {
this.isBox3 = true;
this.min = min;
this.max = max;
}
set( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
}
setFromArray( array ) {
this.makeEmpty();
for ( let i = 0, il = array.length; i < il; i += 3 ) {
this.expandByPoint( _vector$a.fromArray( array, i ) );
}
return this;
}
setFromBufferAttribute( attribute ) {
this.makeEmpty();
for ( let i = 0, il = attribute.count; i < il; i ++ ) {
this.expandByPoint( _vector$a.fromBufferAttribute( attribute, i ) );
}
return this;
}
setFromPoints( points ) {
this.makeEmpty();
for ( let i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
}
setFromCenterAndSize( center, size ) {
const halfSize = _vector$a.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
}
setFromObject( object, precise = false ) {
this.makeEmpty();
return this.expandByObject( object, precise );
}
clone() {
return new this.constructor().copy( this );
}
copy( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
}
makeEmpty() {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
}
isEmpty() {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
}
getCenter( target ) {
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
}
getSize( target ) {
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
}
expandByPoint( point ) {
this.min.min( point );
this.max.max( point );
return this;
}
expandByVector( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
}
expandByScalar( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
}
expandByObject( object, precise = false ) {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object"s, and children"s, world transforms
object.updateWorldMatrix( false, false );
if ( object.boundingBox !== undefined ) {
if ( object.boundingBox === null ) {
object.computeBoundingBox();
}
_box$3.copy( object.boundingBox );
_box$3.applyMatrix4( object.matrixWorld );
this.union( _box$3 );
} else {
const geometry = object.geometry;
if ( geometry !== undefined ) {
if ( precise && geometry.attributes !== undefined && geometry.attributes.position !== undefined ) {
const position = geometry.attributes.position;
for ( let i = 0, l = position.count; i < l; i ++ ) {
_vector$a.fromBufferAttribute( position, i ).applyMatrix4( object.matrixWorld );
this.expandByPoint( _vector$a );
}
} else {
if ( geometry.boundingBox === null ) {
geometry.computeBoundingBox();
}
_box$3.copy( geometry.boundingBox );
_box$3.applyMatrix4( object.matrixWorld );
this.union( _box$3 );
}
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
this.expandByObject( children[ i ], precise );
}
return this;
}
containsPoint( point ) {
return point.x < this.min.x || point.x > this.max.x ||
point.y < this.min.y || point.y > this.max.y ||
point.z < this.min.z || point.z > this.max.z ? false : true;
}
containsBox( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
}
getParameter( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
}
intersectsBox( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x ||
box.max.y < this.min.y || box.min.y > this.max.y ||
box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
}
intersectsSphere( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, _vector$a );
// If that point is inside the sphere, the AABB and sphere intersect.
return _vector$a.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
}
intersectsPlane( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
let min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= - plane.constant && max >= - plane.constant );
}
intersectsTriangle( triangle ) {
if ( this.isEmpty() ) {
return false;
}
// compute box center and extents
this.getCenter( _center );
_extents.subVectors( this.max, _center );
// translate triangle to aabb origin
_v0$2.subVectors( triangle.a, _center );
_v1$7.subVectors( triangle.b, _center );
_v2$4.subVectors( triangle.c, _center );
// compute edge vectors for triangle
_f0.subVectors( _v1$7, _v0$2 );
_f1.subVectors( _v2$4, _v1$7 );
_f2.subVectors( _v0$2, _v2$4 );
// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
let axes = [
0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
_f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
- _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
];
if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) {
return false;
}
// test 3 face normals from the aabb
axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) {
return false;
}
// finally testing the face normal of the triangle
// use already existing triangle edge vectors here
_triangleNormal.crossVectors( _f0, _f1 );
axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];
return satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents );
}
clampPoint( point, target ) {
return target.copy( point ).clamp( this.min, this.max );
}
distanceToPoint( point ) {
return this.clampPoint( point, _vector$a ).distanceTo( point );
}
getBoundingSphere( target ) {
if ( this.isEmpty() ) {
target.makeEmpty();
} else {
this.getCenter( target.center );
target.radius = this.getSize( _vector$a ).length() * 0.5;
}
return target;
}
intersect( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if ( this.isEmpty() ) this.makeEmpty();
return this;
}
union( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
}
applyMatrix4( matrix ) {
// transform of empty box is an empty box.
if ( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
_points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
_points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
_points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
_points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
_points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
_points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
_points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
_points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( _points );
return this;
}
translate( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
}
equals( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
}
const _points = [
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3()
];
const _vector$a = /*@__PURE__*/ new Vector3();
const _box$3 = /*@__PURE__*/ new Box3();
// triangle centered vertices
const _v0$2 = /*@__PURE__*/ new Vector3();
const _v1$7 = /*@__PURE__*/ new Vector3();
const _v2$4 = /*@__PURE__*/ new Vector3();
// triangle edge vectors
const _f0 = /*@__PURE__*/ new Vector3();
const _f1 = /*@__PURE__*/ new Vector3();
const _f2 = /*@__PURE__*/ new Vector3();
const _center = /*@__PURE__*/ new Vector3();
const _extents = /*@__PURE__*/ new Vector3();
const _triangleNormal = /*@__PURE__*/ new Vector3();
const _testAxis = /*@__PURE__*/ new Vector3();
function satForAxes( axes, v0, v1, v2, extents ) {
for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) {
_testAxis.fromArray( axes, i );
// project the aabb onto the separating axis
const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
// project all 3 vertices of the triangle onto the separating axis
const p0 = v0.dot( _testAxis );
const p1 = v1.dot( _testAxis );
const p2 = v2.dot( _testAxis );
// actual test, basically see if either of the most extreme of the triangle points intersects r
if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is separating and we can exit
return false;
}
}
return true;
}
const _box$2 = /*@__PURE__*/ new Box3();
const _v1$6 = /*@__PURE__*/ new Vector3();
const _v2$3 = /*@__PURE__*/ new Vector3();
class Sphere {
constructor( center = new Vector3(), radius = - 1 ) {
this.center = center;
this.radius = radius;
}
set( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
}
setFromPoints( points, optionalCenter ) {
const center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
_box$2.setFromPoints( points ).getCenter( center );
}
let maxRadiusSq = 0;
for ( let i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
}
copy( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
}
isEmpty() {
return ( this.radius < 0 );
}
makeEmpty() {
this.center.set( 0, 0, 0 );
this.radius = - 1;
return this;
}
containsPoint( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
}
distanceToPoint( point ) {
return ( point.distanceTo( this.center ) - this.radius );
}
intersectsSphere( sphere ) {
const radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
}
intersectsBox( box ) {
return box.intersectsSphere( this );
}
intersectsPlane( plane ) {
return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;
}
clampPoint( point, target ) {
const deltaLengthSq = this.center.distanceToSquared( point );
target.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
target.sub( this.center ).normalize();
target.multiplyScalar( this.radius ).add( this.center );
}
return target;
}
getBoundingBox( target ) {
if ( this.isEmpty() ) {
// Empty sphere produces empty bounding box
target.makeEmpty();
return target;
}
target.set( this.center, this.center );
target.expandByScalar( this.radius );
return target;
}
applyMatrix4( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
}
translate( offset ) {
this.center.add( offset );
return this;
}
expandByPoint( point ) {
if ( this.isEmpty() ) {
this.center.copy( point );
this.radius = 0;
return this;
}
_v1$6.subVectors( point, this.center );
const lengthSq = _v1$6.lengthSq();
if ( lengthSq > ( this.radius * this.radius ) ) {
// calculate the minimal sphere
const length = Math.sqrt( lengthSq );
const delta = ( length - this.radius ) * 0.5;
this.center.addScaledVector( _v1$6, delta / length );
this.radius += delta;
}
return this;
}
union( sphere ) {
if ( sphere.isEmpty() ) {
return this;
}
if ( this.isEmpty() ) {
this.copy( sphere );
return this;
}
if ( this.center.equals( sphere.center ) === true ) {
this.radius = Math.max( this.radius, sphere.radius );
} else {
_v2$3.subVectors( sphere.center, this.center ).setLength( sphere.radius );
this.expandByPoint( _v1$6.copy( sphere.center ).add( _v2$3 ) );
this.expandByPoint( _v1$6.copy( sphere.center ).sub( _v2$3 ) );
}
return this;
}
equals( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
clone() {
return new this.constructor().copy( this );
}
}
const _vector$9 = /*@__PURE__*/ new Vector3();
const _segCenter = /*@__PURE__*/ new Vector3();
const _segDir = /*@__PURE__*/ new Vector3();
const _diff = /*@__PURE__*/ new Vector3();
const _edge1 = /*@__PURE__*/ new Vector3();
const _edge2 = /*@__PURE__*/ new Vector3();
const _normal$1 = /*@__PURE__*/ new Vector3();
class Ray {
constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) {
this.origin = origin;
this.direction = direction;
}
set( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
}
copy( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
}
at( t, target ) {
return target.copy( this.origin ).addScaledVector( this.direction, t );
}
lookAt( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
return this;
}
recast( t ) {
this.origin.copy( this.at( t, _vector$9 ) );
return this;
}
closestPointToPoint( point, target ) {
target.subVectors( point, this.origin );
const directionDistance = target.dot( this.direction );
if ( directionDistance < 0 ) {
return target.copy( this.origin );
}
return target.copy( this.origin ).addScaledVector( this.direction, directionDistance );
}
distanceToPoint( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
}
distanceSqToPoint( point ) {
const directionDistance = _vector$9.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
_vector$9.copy( this.origin ).addScaledVector( this.direction, directionDistance );
return _vector$9.distanceToSquared( point );
}
distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
_segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
_segDir.copy( v1 ).sub( v0 ).normalize();
_diff.copy( this.origin ).sub( _segCenter );
const segExtent = v0.distanceTo( v1 ) * 0.5;
const a01 = - this.direction.dot( _segDir );
const b0 = _diff.dot( this.direction );
const b1 = - _diff.dot( _segDir );
const c = _diff.lengthSq();
const det = Math.abs( 1 - a01 * a01 );
let s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
const invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.origin ).addScaledVector( this.direction, s0 );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( _segCenter ).addScaledVector( _segDir, s1 );
}
return sqrDist;
}
intersectSphere( sphere, target ) {
_vector$9.subVectors( sphere.center, this.origin );
const tca = _vector$9.dot( this.direction );
const d2 = _vector$9.dot( _vector$9 ) - tca * tca;
const radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
const thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
const t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
const t1 = tca + thc;
// test to see if t1 is behind the ray - if so, return null
if ( t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, target );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, target );
}
intersectsSphere( sphere ) {
return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );
}
distanceToPlane( plane ) {
const denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
}
intersectPlane( plane, target ) {
const t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, target );
}
intersectsPlane( plane ) {
// check if the ray lies on the plane first
const distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
const denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
}
intersectBox( box, target ) {
let tmin, tmax, tymin, tymax, tzmin, tzmax;
const invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
const origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
if ( tymin > tmin || isNaN( tmin ) ) tmin = tymin;
if ( tymax < tmax || isNaN( tmax ) ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, target );
}
intersectsBox( box ) {
return this.intersectBox( box, _vector$9 ) !== null;
}
intersectTriangle( a, b, c, backfaceCulling, target ) {
// Compute the offset origin, edges, and normal.
// from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
_edge1.subVectors( b, a );
_edge2.subVectors( c, a );
_normal$1.crossVectors( _edge1, _edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
let DdN = this.direction.dot( _normal$1 );
let sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
_diff.subVectors( this.origin, a );
const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
const QdN = - sign * _diff.dot( _normal$1 );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, target );
}
applyMatrix4( matrix4 ) {
this.origin.applyMatrix4( matrix4 );
this.direction.transformDirection( matrix4 );
return this;
}
equals( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
clone() {
return new this.constructor().copy( this );
}
}
class Matrix4 {
constructor() {
Matrix4.prototype.isMatrix4 = true;
this.elements = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
}
set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
}
identity() {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
}
clone() {
return new Matrix4().fromArray( this.elements );
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
return this;
}
copyPosition( m ) {
const te = this.elements, me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
}
setFromMatrix3( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 3 ], me[ 6 ], 0,
me[ 1 ], me[ 4 ], me[ 7 ], 0,
me[ 2 ], me[ 5 ], me[ 8 ], 0,
0, 0, 0, 1
);
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
}
makeBasis( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
}
extractRotation( m ) {
// this method does not support reflection matrices
const te = this.elements;
const me = m.elements;
const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length();
const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length();
const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 3 ] = 0;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 7 ] = 0;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
te[ 11 ] = 0;
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
}
makeRotationFromEuler( euler ) {
const te = this.elements;
const x = euler.x, y = euler.y, z = euler.z;
const a = Math.cos( x ), b = Math.sin( x );
const c = Math.cos( y ), d = Math.sin( y );
const e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === "XYZ" ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === "YXZ" ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === "ZXY" ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === "ZYX" ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === "YZX" ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === "XZY" ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// bottom row
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// last column
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
}
makeRotationFromQuaternion( q ) {
return this.compose( _zero, q, _one );
}
lookAt( eye, target, up ) {
const te = this.elements;
_z.subVectors( eye, target );
if ( _z.lengthSq() === 0 ) {
// eye and target are in the same position
_z.z = 1;
}
_z.normalize();
_x.crossVectors( up, _z );
if ( _x.lengthSq() === 0 ) {
// up and z are parallel
if ( Math.abs( up.z ) === 1 ) {
_z.x += 0.0001;
} else {
_z.z += 0.0001;
}
_z.normalize();
_x.crossVectors( up, _z );
}
_x.normalize();
_y.crossVectors( _z, _x );
te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;
return this;
}
multiply( m ) {
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
}
transpose() {
const te = this.elements;
let tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
}
setPosition( x, y, z ) {
const te = this.elements;
if ( x.isVector3 ) {
te[ 12 ] = x.x;
te[ 13 ] = x.y;
te[ 14 ] = x.z;
} else {
te[ 12 ] = x;
te[ 13 ] = y;
te[ 14 ] = z;
}
return this;
}
invert() {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ],
n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ],
n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ],
n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
te[ 4 ] = t12 * detInv;
te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
te[ 8 ] = t13 * detInv;
te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
te[ 12 ] = t14 * detInv;
te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
return this;
}
scale( v ) {
const te = this.elements;
const x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
}
getMaxScaleOnAxis() {
const te = this.elements;
const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
}
makeTranslation( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
}
makeRotationX( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
}
makeRotationY( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
}
makeRotationZ( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
}
makeRotationAxis( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
const c = Math.cos( angle );
const s = Math.sin( angle );
const t = 1 - c;
const x = axis.x, y = axis.y, z = axis.z;
const tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
}
makeScale( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
}
makeShear( xy, xz, yx, yz, zx, zy ) {
this.set(
1, yx, zx, 0,
xy, 1, zy, 0,
xz, yz, 1, 0,
0, 0, 0, 1
);
return this;
}
compose( position, quaternion, scale ) {
const te = this.elements;
const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
const x2 = x + x, y2 = y + y, z2 = z + z;
const xx = x * x2, xy = x * y2, xz = x * z2;
const yy = y * y2, yz = y * z2, zz = z * z2;
const wx = w * x2, wy = w * y2, wz = w * z2;
const sx = scale.x, sy = scale.y, sz = scale.z;
te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
te[ 1 ] = ( xy + wz ) * sx;
te[ 2 ] = ( xz - wy ) * sx;
te[ 3 ] = 0;
te[ 4 ] = ( xy - wz ) * sy;
te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
te[ 6 ] = ( yz + wx ) * sy;
te[ 7 ] = 0;
te[ 8 ] = ( xz + wy ) * sz;
te[ 9 ] = ( yz - wx ) * sz;
te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
te[ 11 ] = 0;
te[ 12 ] = position.x;
te[ 13 ] = position.y;
te[ 14 ] = position.z;
te[ 15 ] = 1;
return this;
}
decompose( position, quaternion, scale ) {
const te = this.elements;
let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
const det = this.determinant();
if ( det < 0 ) sx = - sx;
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
_m1$2.copy( this );
const invSX = 1 / sx;
const invSY = 1 / sy;
const invSZ = 1 / sz;
_m1$2.elements[ 0 ] *= invSX;
_m1$2.elements[ 1 ] *= invSX;
_m1$2.elements[ 2 ] *= invSX;
_m1$2.elements[ 4 ] *= invSY;
_m1$2.elements[ 5 ] *= invSY;
_m1$2.elements[ 6 ] *= invSY;
_m1$2.elements[ 8 ] *= invSZ;
_m1$2.elements[ 9 ] *= invSZ;
_m1$2.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( _m1$2 );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
}
makePerspective( left, right, top, bottom, near, far ) {
const te = this.elements;
const x = 2 * near / ( right - left );
const y = 2 * near / ( top - bottom );
const a = ( right + left ) / ( right - left );
const b = ( top + bottom ) / ( top - bottom );
const c = - ( far + near ) / ( far - near );
const d = - 2 * far * near / ( far - near );
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
}
makeOrthographic( left, right, top, bottom, near, far ) {
const te = this.elements;
const w = 1.0 / ( right - left );
const h = 1.0 / ( top - bottom );
const p = 1.0 / ( far - near );
const x = ( right + left ) * w;
const y = ( top + bottom ) * h;
const z = ( far + near ) * p;
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
}
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 16; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
}
const _v1$5 = /*@__PURE__*/ new Vector3();
const _m1$2 = /*@__PURE__*/ new Matrix4();
const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 );
const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 );
const _x = /*@__PURE__*/ new Vector3();
const _y = /*@__PURE__*/ new Vector3();
const _z = /*@__PURE__*/ new Vector3();
const _matrix = /*@__PURE__*/ new Matrix4();
const _quaternion$3 = /*@__PURE__*/ new Quaternion();
class Euler {
constructor( x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER ) {
this.isEuler = true;
this._x = x;
this._y = y;
this._z = z;
this._order = order;
}
get x() {
return this._x;
}
set x( value ) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y( value ) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z( value ) {
this._z = value;
this._onChangeCallback();
}
get order() {
return this._order;
}
set order( value ) {
this._order = value;
this._onChangeCallback();
}
set( x, y, z, order = this._order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor( this._x, this._y, this._z, this._order );
}
copy( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this._onChangeCallback();
return this;
}
setFromRotationMatrix( m, order = this._order, update = true ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements;
const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
switch ( order ) {
case "XYZ":
this._y = Math.asin( clamp$1( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
break;
case "YXZ":
this._x = Math.asin( - clamp$1( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.9999999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
break;
case "ZXY":
this._x = Math.asin( clamp$1( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.9999999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
break;
case "ZYX":
this._y = Math.asin( - clamp$1( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
break;
case "YZX":
this._z = Math.asin( clamp$1( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
break;
case "XZY":
this._z = Math.asin( - clamp$1( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
break;
default:
console.warn( "THREE.Euler: .setFromRotationMatrix() encountered an unknown order: " + order );
}
this._order = order;
if ( update === true ) this._onChangeCallback();
return this;
}
setFromQuaternion( q, order, update ) {
_matrix.makeRotationFromQuaternion( q );
return this.setFromRotationMatrix( _matrix, order, update );
}
setFromVector3( v, order = this._order ) {
return this.set( v.x, v.y, v.z, order );
}
reorder( newOrder ) {
// WARNING: this discards revolution information -bhouston
_quaternion$3.setFromEuler( this );
return this.setFromQuaternion( _quaternion$3, newOrder );
}
equals( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
}
fromArray( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this._onChangeCallback();
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
}
_onChange( callback ) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
*[ Symbol.iterator ]() {
yield this._x;
yield this._y;
yield this._z;
yield this._order;
}
}
Euler.DEFAULT_ORDER = "XYZ";
class Layers {
constructor() {
this.mask = 1 | 0;
}
set( channel ) {
this.mask = ( 1 << channel | 0 ) >>> 0;
}
enable( channel ) {
this.mask |= 1 << channel | 0;
}
enableAll() {
this.mask = 0xffffffff | 0;
}
toggle( channel ) {
this.mask ^= 1 << channel | 0;
}
disable( channel ) {
this.mask &= ~ ( 1 << channel | 0 );
}
disableAll() {
this.mask = 0;
}
test( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
isEnabled( channel ) {
return ( this.mask & ( 1 << channel | 0 ) ) !== 0;
}
}
let _object3DId = 0;
const _v1$4 = /*@__PURE__*/ new Vector3();
const _q1 = /*@__PURE__*/ new Quaternion();
const _m1$1 = /*@__PURE__*/ new Matrix4();
const _target = /*@__PURE__*/ new Vector3();
const _position$3 = /*@__PURE__*/ new Vector3();
const _scale$2 = /*@__PURE__*/ new Vector3();
const _quaternion$2 = /*@__PURE__*/ new Quaternion();
const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 );
const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 );
const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 );
const _addedEvent = { type: "added" };
const _removedEvent = { type: "removed" };
class Object3D extends EventDispatcher {
constructor() {
super();
this.isObject3D = true;
Object.defineProperty( this, "id", { value: _object3DId ++ } );
this.uuid = generateUUID();
this.name = "";
this.type = "Object3D";
this.parent = null;
this.children = [];
this.up = Object3D.DEFAULT_UP.clone();
const position = new Vector3();
const rotation = new Euler();
const quaternion = new Quaternion();
const scale = new Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation._onChange( onRotationChange );
quaternion._onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
configurable: true,
enumerable: true,
value: position
},
rotation: {
configurable: true,
enumerable: true,
value: rotation
},
quaternion: {
configurable: true,
enumerable: true,
value: quaternion
},
scale: {
configurable: true,
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
} );
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE;
this.matrixWorldNeedsUpdate = false;
this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; // checked by the renderer
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.animations = [];
this.userData = {};
}
onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {}
onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {}
applyMatrix4( matrix ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
this.matrix.premultiply( matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
}
applyQuaternion( q ) {
this.quaternion.premultiply( q );
return this;
}
setRotationFromAxisAngle( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
}
setRotationFromEuler( euler ) {
this.quaternion.setFromEuler( euler, true );
}
setRotationFromMatrix( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
}
setRotationFromQuaternion( q ) {
// assumes q is normalized
this.quaternion.copy( q );
}
rotateOnAxis( axis, angle ) {
// rotate object on axis in object space
// axis is assumed to be normalized
_q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( _q1 );
return this;
}
rotateOnWorldAxis( axis, angle ) {
// rotate object on axis in world space
// axis is assumed to be normalized
// method assumes no rotated parent
_q1.setFromAxisAngle( axis, angle );
this.quaternion.premultiply( _q1 );
return this;
}
rotateX( angle ) {
return this.rotateOnAxis( _xAxis, angle );
}
rotateY( angle ) {
return this.rotateOnAxis( _yAxis, angle );
}
rotateZ( angle ) {
return this.rotateOnAxis( _zAxis, angle );
}
translateOnAxis( axis, distance ) {
// translate object by distance along axis in object space
// axis is assumed to be normalized
_v1$4.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( _v1$4.multiplyScalar( distance ) );
return this;
}
translateX( distance ) {
return this.translateOnAxis( _xAxis, distance );
}
translateY( distance ) {
return this.translateOnAxis( _yAxis, distance );
}
translateZ( distance ) {
return this.translateOnAxis( _zAxis, distance );
}
localToWorld( vector ) {
this.updateWorldMatrix( true, false );
return vector.applyMatrix4( this.matrixWorld );
}
worldToLocal( vector ) {
this.updateWorldMatrix( true, false );
return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() );
}
lookAt( x, y, z ) {
// This method does not support objects having non-uniformly-scaled parent(s)
if ( x.isVector3 ) {
_target.copy( x );
} else {
_target.set( x, y, z );
}
const parent = this.parent;
this.updateWorldMatrix( true, false );
_position$3.setFromMatrixPosition( this.matrixWorld );
if ( this.isCamera || this.isLight ) {
_m1$1.lookAt( _position$3, _target, this.up );
} else {
_m1$1.lookAt( _target, _position$3, this.up );
}
this.quaternion.setFromRotationMatrix( _m1$1 );
if ( parent ) {
_m1$1.extractRotation( parent.matrixWorld );
_q1.setFromRotationMatrix( _m1$1 );
this.quaternion.premultiply( _q1.invert() );
}
}
add( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( "THREE.Object3D.add: object can"t be added as a child of itself.", object );
return this;
}
if ( object && object.isObject3D ) {
if ( object.parent !== null ) {
object.parent.remove( object );
}
object.parent = this;
this.children.push( object );
object.dispatchEvent( _addedEvent );
} else {
console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );
}
return this;
}
remove( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
return this;
}
const index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
this.children.splice( index, 1 );
object.dispatchEvent( _removedEvent );
}
return this;
}
removeFromParent() {
const parent = this.parent;
if ( parent !== null ) {
parent.remove( this );
}
return this;
}
clear() {
for ( let i = 0; i < this.children.length; i ++ ) {
const object = this.children[ i ];
object.parent = null;
object.dispatchEvent( _removedEvent );
}
this.children.length = 0;
return this;
}
attach( object ) {
// adds object as a child of this, while maintaining the object"s world transform
// Note: This method does not support scene graphs having non-uniformly-scaled nodes(s)
this.updateWorldMatrix( true, false );
_m1$1.copy( this.matrixWorld ).invert();
if ( object.parent !== null ) {
object.parent.updateWorldMatrix( true, false );
_m1$1.multiply( object.parent.matrixWorld );
}
object.applyMatrix4( _m1$1 );
this.add( object );
object.updateWorldMatrix( false, true );
return this;
}
getObjectById( id ) {
return this.getObjectByProperty( "id", id );
}
getObjectByName( name ) {
return this.getObjectByProperty( "name", name );
}
getObjectByProperty( name, value ) {
if ( this[ name ] === value ) return this;
for ( let i = 0, l = this.children.length; i < l; i ++ ) {
const child = this.children[ i ];
const object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
}
getObjectsByProperty( name, value ) {
let result = [];
if ( this[ name ] === value ) result.push( this );
for ( let i = 0, l = this.children.length; i < l; i ++ ) {
const childResult = this.children[ i ].getObjectsByProperty( name, value );
if ( childResult.length > 0 ) {
result = result.concat( childResult );
}
}
return result;
}
getWorldPosition( target ) {
this.updateWorldMatrix( true, false );
return target.setFromMatrixPosition( this.matrixWorld );
}
getWorldQuaternion( target ) {
this.updateWorldMatrix( true, false );
this.matrixWorld.decompose( _position$3, target, _scale$2 );
return target;
}
getWorldScale( target ) {
this.updateWorldMatrix( true, false );
this.matrixWorld.decompose( _position$3, _quaternion$2, target );
return target;
}
getWorldDirection( target ) {
this.updateWorldMatrix( true, false );
const e = this.matrixWorld.elements;
return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();
}
raycast( /* raycaster, intersects */ ) {}
traverse( callback ) {
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
}
traverseVisible( callback ) {
if ( this.visible === false ) return;
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
}
traverseAncestors( callback ) {
const parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
}
updateMatrix() {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
}
updateMatrixWorld( force ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// update children
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
const child = children[ i ];
if ( child.matrixWorldAutoUpdate === true || force === true ) {
child.updateMatrixWorld( force );
}
}
}
updateWorldMatrix( updateParents, updateChildren ) {
const parent = this.parent;
if ( updateParents === true && parent !== null && parent.matrixWorldAutoUpdate === true ) {
parent.updateWorldMatrix( true, false );
}
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
// update children
if ( updateChildren === true ) {
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
const child = children[ i ];
if ( child.matrixWorldAutoUpdate === true ) {
child.updateWorldMatrix( false, true );
}
}
}
}
toJSON( meta ) {
// meta is a string when called from JSON.stringify
const isRootObject = ( meta === undefined || typeof meta === "string" );
const output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {},
shapes: {},
skeletons: {},
animations: {},
nodes: {}
};
output.metadata = {
version: 4.5,
type: "Object",
generator: "Object3D.toJSON"
};
}
// standard Object3D serialization
const object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== "" ) object.name = this.name;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
if ( this.frustumCulled === false ) object.frustumCulled = false;
if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder;
if ( Object.keys( this.userData ).length > 0 ) object.userData = this.userData;
object.layers = this.layers.mask;
object.matrix = this.matrix.toArray();
object.up = this.up.toArray();
if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;
// object specific properties
if ( this.isInstancedMesh ) {
object.type = "InstancedMesh";
object.count = this.count;
object.instanceMatrix = this.instanceMatrix.toJSON();
if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON();
}
//
function serialize( library, element ) {
if ( library[ element.uuid ] === undefined ) {
library[ element.uuid ] = element.toJSON( meta );
}
return element.uuid;
}
if ( this.isScene ) {
if ( this.background ) {
if ( this.background.isColor ) {
object.background = this.background.toJSON();
} else if ( this.background.isTexture ) {
object.background = this.background.toJSON( meta ).uuid;
}
}
if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) {
object.environment = this.environment.toJSON( meta ).uuid;
}
} else if ( this.isMesh || this.isLine || this.isPoints ) {
object.geometry = serialize( meta.geometries, this.geometry );
const parameters = this.geometry.parameters;
if ( parameters !== undefined && parameters.shapes !== undefined ) {
const shapes = parameters.shapes;
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
serialize( meta.shapes, shape );
}
} else {
serialize( meta.shapes, shapes );
}
}
}
if ( this.isSkinnedMesh ) {
object.bindMode = this.bindMode;
object.bindMatrix = this.bindMatrix.toArray();
if ( this.skeleton !== undefined ) {
serialize( meta.skeletons, this.skeleton );
object.skeleton = this.skeleton.uuid;
}
}
if ( this.material !== undefined ) {
if ( Array.isArray( this.material ) ) {
const uuids = [];
for ( let i = 0, l = this.material.length; i < l; i ++ ) {
uuids.push( serialize( meta.materials, this.material[ i ] ) );
}
object.material = uuids;
} else {
object.material = serialize( meta.materials, this.material );
}
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( let i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
//
if ( this.animations.length > 0 ) {
object.animations = [];
for ( let i = 0; i < this.animations.length; i ++ ) {
const animation = this.animations[ i ];
object.animations.push( serialize( meta.animations, animation ) );
}
}
if ( isRootObject ) {
const geometries = extractFromCache( meta.geometries );
const materials = extractFromCache( meta.materials );
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const shapes = extractFromCache( meta.shapes );
const skeletons = extractFromCache( meta.skeletons );
const animations = extractFromCache( meta.animations );
const nodes = extractFromCache( meta.nodes );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
if ( shapes.length > 0 ) output.shapes = shapes;
if ( skeletons.length > 0 ) output.skeletons = skeletons;
if ( animations.length > 0 ) output.animations = animations;
if ( nodes.length > 0 ) output.nodes = nodes;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
}
clone( recursive ) {
return new this.constructor().copy( this, recursive );
}
copy( source, recursive = true ) {
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.rotation.order = source.rotation.order;
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.animations = source.animations;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( let i = 0; i < source.children.length; i ++ ) {
const child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
}
Object3D.DEFAULT_UP = /*@__PURE__*/ new Vector3( 0, 1, 0 );
Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true;
Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true;
const _v0$1 = /*@__PURE__*/ new Vector3();
const _v1$3 = /*@__PURE__*/ new Vector3();
const _v2$2 = /*@__PURE__*/ new Vector3();
const _v3$1 = /*@__PURE__*/ new Vector3();
const _vab = /*@__PURE__*/ new Vector3();
const _vac = /*@__PURE__*/ new Vector3();
const _vbc = /*@__PURE__*/ new Vector3();
const _vap = /*@__PURE__*/ new Vector3();
const _vbp = /*@__PURE__*/ new Vector3();
const _vcp = /*@__PURE__*/ new Vector3();
let warnedGetUV = false;
class Triangle {
constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) {
this.a = a;
this.b = b;
this.c = c;
}
static getNormal( a, b, c, target ) {
target.subVectors( c, b );
_v0$1.subVectors( a, b );
target.cross( _v0$1 );
const targetLengthSq = target.lengthSq();
if ( targetLengthSq > 0 ) {
return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
}
return target.set( 0, 0, 0 );
}
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
static getBarycoord( point, a, b, c, target ) {
_v0$1.subVectors( c, a );
_v1$3.subVectors( b, a );
_v2$2.subVectors( point, a );
const dot00 = _v0$1.dot( _v0$1 );
const dot01 = _v0$1.dot( _v1$3 );
const dot02 = _v0$1.dot( _v2$2 );
const dot11 = _v1$3.dot( _v1$3 );
const dot12 = _v1$3.dot( _v2$2 );
const denom = ( dot00 * dot11 - dot01 * dot01 );
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return target.set( - 2, - 1, - 1 );
}
const invDenom = 1 / denom;
const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return target.set( 1 - u - v, v, u );
}
static containsPoint( point, a, b, c ) {
this.getBarycoord( point, a, b, c, _v3$1 );
return ( _v3$1.x >= 0 ) && ( _v3$1.y >= 0 ) && ( ( _v3$1.x + _v3$1.y ) <= 1 );
}
static getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) { // @deprecated, r151
if ( warnedGetUV === false ) {
console.warn( "THREE.Triangle.getUV() has been renamed to THREE.Triangle.getInterpolation()." );
warnedGetUV = true;
}
return this.getInterpolation( point, p1, p2, p3, uv1, uv2, uv3, target );
}
static getInterpolation( point, p1, p2, p3, v1, v2, v3, target ) {
this.getBarycoord( point, p1, p2, p3, _v3$1 );
target.setScalar( 0 );
target.addScaledVector( v1, _v3$1.x );
target.addScaledVector( v2, _v3$1.y );
target.addScaledVector( v3, _v3$1.z );
return target;
}
static isFrontFacing( a, b, c, direction ) {
_v0$1.subVectors( c, b );
_v1$3.subVectors( a, b );
// strictly front facing
return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;
}
set( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
}
setFromPointsAndIndices( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
}
setFromAttributeAndIndices( attribute, i0, i1, i2 ) {
this.a.fromBufferAttribute( attribute, i0 );
this.b.fromBufferAttribute( attribute, i1 );
this.c.fromBufferAttribute( attribute, i2 );
return this;
}
clone() {
return new this.constructor().copy( this );
}
copy( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
}
getArea() {
_v0$1.subVectors( this.c, this.b );
_v1$3.subVectors( this.a, this.b );
return _v0$1.cross( _v1$3 ).length() * 0.5;
}
getMidpoint( target ) {
return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
}
getNormal( target ) {
return Triangle.getNormal( this.a, this.b, this.c, target );
}
getPlane( target ) {
return target.setFromCoplanarPoints( this.a, this.b, this.c );
}
getBarycoord( point, target ) {
return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
}
getUV( point, uv1, uv2, uv3, target ) { // @deprecated, r151
if ( warnedGetUV === false ) {
console.warn( "THREE.Triangle.getUV() has been renamed to THREE.Triangle.getInterpolation()." );
warnedGetUV = true;
}
return Triangle.getInterpolation( point, this.a, this.b, this.c, uv1, uv2, uv3, target );
}
getInterpolation( point, v1, v2, v3, target ) {
return Triangle.getInterpolation( point, this.a, this.b, this.c, v1, v2, v3, target );
}
containsPoint( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
}
isFrontFacing( direction ) {
return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
}
intersectsBox( box ) {
return box.intersectsTriangle( this );
}
closestPointToPoint( p, target ) {
const a = this.a, b = this.b, c = this.c;
let v, w;
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we"re distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors( b, a );
_vac.subVectors( c, a );
_vap.subVectors( p, a );
const d1 = _vab.dot( _vap );
const d2 = _vac.dot( _vap );
if ( d1 <= 0 && d2 <= 0 ) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy( a );
}
_vbp.subVectors( p, b );
const d3 = _vab.dot( _vbp );
const d4 = _vac.dot( _vbp );
if ( d3 >= 0 && d4 <= d3 ) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy( b );
}
const vc = d1 * d4 - d3 * d2;
if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
v = d1 / ( d1 - d3 );
// edge region of AB; barycentric coords (1-v, v, 0)
return target.copy( a ).addScaledVector( _vab, v );
}
_vcp.subVectors( p, c );
const d5 = _vab.dot( _vcp );
const d6 = _vac.dot( _vcp );
if ( d6 >= 0 && d5 <= d6 ) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy( c );
}
const vb = d5 * d2 - d1 * d6;
if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
w = d2 / ( d2 - d6 );
// edge region of AC; barycentric coords (1-w, 0, w)
return target.copy( a ).addScaledVector( _vac, w );
}
const va = d3 * d6 - d5 * d4;
if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
_vbc.subVectors( c, b );
w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
// edge region of BC; barycentric coords (0, 1-w, w)
return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
}
// face region
const denom = 1 / ( va + vb + vc );
// u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
}
equals( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
}
let materialId = 0;
class Material extends EventDispatcher {
constructor() {
super();
this.isMaterial = true;
Object.defineProperty( this, "id", { value: materialId ++ } );
this.uuid = generateUUID();
this.name = "";
this.type = "Material";
this.blending = NormalBlending;
this.side = FrontSide;
this.vertexColors = false;
this.opacity = 1;
this.transparent = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.stencilWriteMask = 0xff;
this.stencilFunc = AlwaysStencilFunc;
this.stencilRef = 0;
this.stencilFuncMask = 0xff;
this.stencilFail = KeepStencilOp;
this.stencilZFail = KeepStencilOp;
this.stencilZPass = KeepStencilOp;
this.stencilWrite = false;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.shadowSide = null;
this.colorWrite = true;
this.precision = null; // override the renderer"s default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaToCoverage = false;
this.premultipliedAlpha = false;
this.forceSinglePass = false;
this.visible = true;
this.toneMapped = true;
this.userData = {};
this.version = 0;
this._alphaTest = 0;
}
get alphaTest() {
return this._alphaTest;
}
set alphaTest( value ) {
if ( this._alphaTest > 0 !== value > 0 ) {
this.version ++;
}
this._alphaTest = value;
}
onBuild( /* shaderobject, renderer */ ) {}
onBeforeRender( /* renderer, scene, camera, geometry, object, group */ ) {}
onBeforeCompile( /* shaderobject, renderer */ ) {}
customProgramCacheKey() {
return this.onBeforeCompile.toString();
}
setValues( values ) {
if ( values === undefined ) return;
for ( const key in values ) {
const newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( `THREE.Material: parameter "${ key }" has value of undefined.` );
continue;
}
const currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( `THREE.Material: "${ key }" is not a property of THREE.${ this.type }.` );
continue;
}
if ( currentValue && currentValue.isColor ) {
currentValue.set( newValue );
} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
currentValue.copy( newValue );
} else {
this[ key ] = newValue;
}
}
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === "string" );
if ( isRootObject ) {
meta = {
textures: {},
images: {}
};
}
const data = {
metadata: {
version: 4.5,
type: "Material",
generator: "Material.toJSON"
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== "" ) data.name = this.name;
if ( this.color && this.color.isColor ) data.color = this.color.getHex();
if ( this.roughness !== undefined ) data.roughness = this.roughness;
if ( this.metalness !== undefined ) data.metalness = this.metalness;
if ( this.sheen !== undefined ) data.sheen = this.sheen;
if ( this.sheenColor && this.sheenColor.isColor ) data.sheenColor = this.sheenColor.getHex();
if ( this.sheenRoughness !== undefined ) data.sheenRoughness = this.sheenRoughness;
if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;
if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity;
if ( this.specularColor && this.specularColor.isColor ) data.specularColor = this.specularColor.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat;
if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness;
if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {
data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;
}
if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;
}
if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
}
if ( this.iridescence !== undefined ) data.iridescence = this.iridescence;
if ( this.iridescenceIOR !== undefined ) data.iridescenceIOR = this.iridescenceIOR;
if ( this.iridescenceThicknessRange !== undefined ) data.iridescenceThicknessRange = this.iridescenceThicknessRange;
if ( this.iridescenceMap && this.iridescenceMap.isTexture ) {
data.iridescenceMap = this.iridescenceMap.toJSON( meta ).uuid;
}
if ( this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture ) {
data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON( meta ).uuid;
}
if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid;
if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap && this.lightMap.isTexture ) {
data.lightMap = this.lightMap.toJSON( meta ).uuid;
data.lightMapIntensity = this.lightMapIntensity;
}
if ( this.aoMap && this.aoMap.isTexture ) {
data.aoMap = this.aoMap.toJSON( meta ).uuid;
data.aoMapIntensity = this.aoMapIntensity;
}
if ( this.bumpMap && this.bumpMap.isTexture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap && this.normalMap.isTexture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalMapType = this.normalMapType;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap && this.displacementMap.isTexture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid;
if ( this.specularColorMap && this.specularColorMap.isTexture ) data.specularColorMap = this.specularColorMap.toJSON( meta ).uuid;
if ( this.envMap && this.envMap.isTexture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
if ( this.combine !== undefined ) data.combine = this.combine;
}
if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity;
if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity;
if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio;
if ( this.gradientMap && this.gradientMap.isTexture ) {
data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
}
if ( this.transmission !== undefined ) data.transmission = this.transmission;
if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid;
if ( this.thickness !== undefined ) data.thickness = this.thickness;
if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid;
if ( this.attenuationDistance !== undefined && this.attenuationDistance !== Infinity ) data.attenuationDistance = this.attenuationDistance;
if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex();
if ( this.size !== undefined ) data.size = this.size;
if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.blending !== NormalBlending ) data.blending = this.blending;
if ( this.side !== FrontSide ) data.side = this.side;
if ( this.vertexColors ) data.vertexColors = true;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = this.transparent;
data.depthFunc = this.depthFunc;
data.depthTest = this.depthTest;
data.depthWrite = this.depthWrite;
data.colorWrite = this.colorWrite;
data.stencilWrite = this.stencilWrite;
data.stencilWriteMask = this.stencilWriteMask;
data.stencilFunc = this.stencilFunc;
data.stencilRef = this.stencilRef;
data.stencilFuncMask = this.stencilFuncMask;
data.stencilFail = this.stencilFail;
data.stencilZFail = this.stencilZFail;
data.stencilZPass = this.stencilZPass;
// rotation (SpriteMaterial)
if ( this.rotation !== undefined && this.rotation !== 0 ) data.rotation = this.rotation;
if ( this.polygonOffset === true ) data.polygonOffset = true;
if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor;
if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits;
if ( this.linewidth !== undefined && this.linewidth !== 1 ) data.linewidth = this.linewidth;
if ( this.dashSize !== undefined ) data.dashSize = this.dashSize;
if ( this.gapSize !== undefined ) data.gapSize = this.gapSize;
if ( this.scale !== undefined ) data.scale = this.scale;
if ( this.dithering === true ) data.dithering = true;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.alphaToCoverage === true ) data.alphaToCoverage = this.alphaToCoverage;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;
if ( this.forceSinglePass === true ) data.forceSinglePass = this.forceSinglePass;
if ( this.wireframe === true ) data.wireframe = this.wireframe;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
if ( this.wireframeLinecap !== "round" ) data.wireframeLinecap = this.wireframeLinecap;
if ( this.wireframeLinejoin !== "round" ) data.wireframeLinejoin = this.wireframeLinejoin;
if ( this.flatShading === true ) data.flatShading = this.flatShading;
if ( this.visible === false ) data.visible = false;
if ( this.toneMapped === false ) data.toneMapped = false;
if ( this.fog === false ) data.fog = false;
if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRootObject ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.blending = source.blending;
this.side = source.side;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.stencilWriteMask = source.stencilWriteMask;
this.stencilFunc = source.stencilFunc;
this.stencilRef = source.stencilRef;
this.stencilFuncMask = source.stencilFuncMask;
this.stencilFail = source.stencilFail;
this.stencilZFail = source.stencilZFail;
this.stencilZPass = source.stencilZPass;
this.stencilWrite = source.stencilWrite;
const srcPlanes = source.clippingPlanes;
let dstPlanes = null;
if ( srcPlanes !== null ) {
const n = srcPlanes.length;
dstPlanes = new Array( n );
for ( let i = 0; i !== n; ++ i ) {
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
}
this.clippingPlanes = dstPlanes;
this.clipIntersection = source.clipIntersection;
this.clipShadows = source.clipShadows;
this.shadowSide = source.shadowSide;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.alphaToCoverage = source.alphaToCoverage;
this.premultipliedAlpha = source.premultipliedAlpha;
this.forceSinglePass = source.forceSinglePass;
this.visible = source.visible;
this.toneMapped = source.toneMapped;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
return this;
}
dispose() {
this.dispatchEvent( { type: "dispose" } );
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
}
const _colorKeywords = { "aliceblue": 0xF0F8FF, "antiquewhite": 0xFAEBD7, "aqua": 0x00FFFF, "aquamarine": 0x7FFFD4, "azure": 0xF0FFFF,
"beige": 0xF5F5DC, "bisque": 0xFFE4C4, "black": 0x000000, "blanchedalmond": 0xFFEBCD, "blue": 0x0000FF, "blueviolet": 0x8A2BE2,
"brown": 0xA52A2A, "burlywood": 0xDEB887, "cadetblue": 0x5F9EA0, "chartreuse": 0x7FFF00, "chocolate": 0xD2691E, "coral": 0xFF7F50,
"cornflowerblue": 0x6495ED, "cornsilk": 0xFFF8DC, "crimson": 0xDC143C, "cyan": 0x00FFFF, "darkblue": 0x00008B, "darkcyan": 0x008B8B,
"darkgoldenrod": 0xB8860B, "darkgray": 0xA9A9A9, "darkgreen": 0x006400, "darkgrey": 0xA9A9A9, "darkkhaki": 0xBDB76B, "darkmagenta": 0x8B008B,
"darkolivegreen": 0x556B2F, "darkorange": 0xFF8C00, "darkorchid": 0x9932CC, "darkred": 0x8B0000, "darksalmon": 0xE9967A, "darkseagreen": 0x8FBC8F,
"darkslateblue": 0x483D8B, "darkslategray": 0x2F4F4F, "darkslategrey": 0x2F4F4F, "darkturquoise": 0x00CED1, "darkviolet": 0x9400D3,
"deeppink": 0xFF1493, "deepskyblue": 0x00BFFF, "dimgray": 0x696969, "dimgrey": 0x696969, "dodgerblue": 0x1E90FF, "firebrick": 0xB22222,
"floralwhite": 0xFFFAF0, "forestgreen": 0x228B22, "fuchsia": 0xFF00FF, "gainsboro": 0xDCDCDC, "ghostwhite": 0xF8F8FF, "gold": 0xFFD700,
"goldenrod": 0xDAA520, "gray": 0x808080, "green": 0x008000, "greenyellow": 0xADFF2F, "grey": 0x808080, "honeydew": 0xF0FFF0, "hotpink": 0xFF69B4,
"indianred": 0xCD5C5C, "indigo": 0x4B0082, "ivory": 0xFFFFF0, "khaki": 0xF0E68C, "lavender": 0xE6E6FA, "lavenderblush": 0xFFF0F5, "lawngreen": 0x7CFC00,
"lemonchiffon": 0xFFFACD, "lightblue": 0xADD8E6, "lightcoral": 0xF08080, "lightcyan": 0xE0FFFF, "lightgoldenrodyellow": 0xFAFAD2, "lightgray": 0xD3D3D3,
"lightgreen": 0x90EE90, "lightgrey": 0xD3D3D3, "lightpink": 0xFFB6C1, "lightsalmon": 0xFFA07A, "lightseagreen": 0x20B2AA, "lightskyblue": 0x87CEFA,
"lightslategray": 0x778899, "lightslategrey": 0x778899, "lightsteelblue": 0xB0C4DE, "lightyellow": 0xFFFFE0, "lime": 0x00FF00, "limegreen": 0x32CD32,
"linen": 0xFAF0E6, "magenta": 0xFF00FF, "maroon": 0x800000, "mediumaquamarine": 0x66CDAA, "mediumblue": 0x0000CD, "mediumorchid": 0xBA55D3,
"mediumpurple": 0x9370DB, "mediumseagreen": 0x3CB371, "mediumslateblue": 0x7B68EE, "mediumspringgreen": 0x00FA9A, "mediumturquoise": 0x48D1CC,
"mediumvioletred": 0xC71585, "midnightblue": 0x191970, "mintcream": 0xF5FFFA, "mistyrose": 0xFFE4E1, "moccasin": 0xFFE4B5, "navajowhite": 0xFFDEAD,
"navy": 0x000080, "oldlace": 0xFDF5E6, "olive": 0x808000, "olivedrab": 0x6B8E23, "orange": 0xFFA500, "orangered": 0xFF4500, "orchid": 0xDA70D6,
"palegoldenrod": 0xEEE8AA, "palegreen": 0x98FB98, "paleturquoise": 0xAFEEEE, "palevioletred": 0xDB7093, "papayawhip": 0xFFEFD5, "peachpuff": 0xFFDAB9,
"peru": 0xCD853F, "pink": 0xFFC0CB, "plum": 0xDDA0DD, "powderblue": 0xB0E0E6, "purple": 0x800080, "rebeccapurple": 0x663399, "red": 0xFF0000, "rosybrown": 0xBC8F8F,
"royalblue": 0x4169E1, "saddlebrown": 0x8B4513, "salmon": 0xFA8072, "sandybrown": 0xF4A460, "seagreen": 0x2E8B57, "seashell": 0xFFF5EE,
"sienna": 0xA0522D, "silver": 0xC0C0C0, "skyblue": 0x87CEEB, "slateblue": 0x6A5ACD, "slategray": 0x708090, "slategrey": 0x708090, "snow": 0xFFFAFA,
"springgreen": 0x00FF7F, "steelblue": 0x4682B4, "tan": 0xD2B48C, "teal": 0x008080, "thistle": 0xD8BFD8, "tomato": 0xFF6347, "turquoise": 0x40E0D0,
"violet": 0xEE82EE, "wheat": 0xF5DEB3, "white": 0xFFFFFF, "whitesmoke": 0xF5F5F5, "yellow": 0xFFFF00, "yellowgreen": 0x9ACD32 };
const _hslA = { h: 0, s: 0, l: 0 };
const _hslB = { h: 0, s: 0, l: 0 };
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
class Color {
constructor( r, g, b ) {
this.isColor = true;
this.r = 1;
this.g = 1;
this.b = 1;
if ( g === undefined && b === undefined ) {
// r is THREE.Color, hex or string
return this.set( r );
}
return this.setRGB( r, g, b );
}
set( value ) {
if ( value && value.isColor ) {
this.copy( value );
} else if ( typeof value === "number" ) {
this.setHex( value );
} else if ( typeof value === "string" ) {
this.setStyle( value );
}
return this;
}
setScalar( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
}
setHex( hex, colorSpace = SRGBColorSpace ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
ColorManagement.toWorkingColorSpace( this, colorSpace );
return this;
}
setRGB( r, g, b, colorSpace = ColorManagement.workingColorSpace ) {
this.r = r;
this.g = g;
this.b = b;
ColorManagement.toWorkingColorSpace( this, colorSpace );
return this;
}
setHSL( h, s, l, colorSpace = ColorManagement.workingColorSpace ) {
// h,s,l ranges are in 0.0 - 1.0
h = euclideanModulo( h, 1 );
s = clamp$1( s, 0, 1 );
l = clamp$1( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
const q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
ColorManagement.toWorkingColorSpace( this, colorSpace );
return this;
}
setStyle( style, colorSpace = SRGBColorSpace ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( "THREE.Color: Alpha component of " + style + " will be ignored." );
}
}
let m;
if ( m = /^(w+)(([^)]*))/.exec( style ) ) {
// rgb / hsl
let color;
const name = m[ 1 ];
const components = m[ 2 ];
switch ( name ) {
case "rgb":
case "rgba":
if ( color = /^s*(d+)s*,s*(d+)s*,s*(d+)s*(?:,s*(d*.?d+)s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
handleAlpha( color[ 4 ] );
return this.setRGB(
Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255,
Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255,
Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255,
colorSpace
);
}
if ( color = /^s*(d+)\%s*,s*(d+)\%s*,s*(d+)\%s*(?:,s*(d*.?d+)s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
handleAlpha( color[ 4 ] );
return this.setRGB(
Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100,
Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100,
Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100,
colorSpace
);
}
break;
case "hsl":
case "hsla":
if ( color = /^s*(d*.?d+)s*,s*(d*.?d+)\%s*,s*(d*.?d+)\%s*(?:,s*(d*.?d+)s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
handleAlpha( color[ 4 ] );
return this.setHSL(
parseFloat( color[ 1 ] ) / 360,
parseFloat( color[ 2 ] ) / 100,
parseFloat( color[ 3 ] ) / 100,
colorSpace
);
}
break;
default:
console.warn( "THREE.Color: Unknown color model " + style );
}
} else if ( m = /^#([A-Fa-fd]+)$/.exec( style ) ) {
// hex color
const hex = m[ 1 ];
const size = hex.length;
if ( size === 3 ) {
// #ff0
return this.setRGB(
parseInt( hex.charAt( 0 ), 16 ) / 15,
parseInt( hex.charAt( 1 ), 16 ) / 15,
parseInt( hex.charAt( 2 ), 16 ) / 15,
colorSpace
);
} else if ( size === 6 ) {
// #ff0000
return this.setHex( parseInt( hex, 16 ), colorSpace );
} else {
console.warn( "THREE.Color: Invalid hex color " + style );
}
} else if ( style && style.length > 0 ) {
return this.setColorName( style, colorSpace );
}
return this;
}
setColorName( style, colorSpace = SRGBColorSpace ) {
// color keywords
const hex = _colorKeywords[ style.toLowerCase() ];
if ( hex !== undefined ) {
// red
this.setHex( hex, colorSpace );
} else {
// unknown color
console.warn( "THREE.Color: Unknown color " + style );
}
return this;
}
clone() {
return new this.constructor( this.r, this.g, this.b );
}
copy( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
}
copySRGBToLinear( color ) {
this.r = SRGBToLinear( color.r );
this.g = SRGBToLinear( color.g );
this.b = SRGBToLinear( color.b );
return this;
}
copyLinearToSRGB( color ) {
this.r = LinearToSRGB( color.r );
this.g = LinearToSRGB( color.g );
this.b = LinearToSRGB( color.b );
return this;
}
convertSRGBToLinear() {
this.copySRGBToLinear( this );
return this;
}
convertLinearToSRGB() {
this.copyLinearToSRGB( this );
return this;
}
getHex( colorSpace = SRGBColorSpace ) {
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
return Math.round( clamp$1( _color.r * 255, 0, 255 ) ) * 65536 + Math.round( clamp$1( _color.g * 255, 0, 255 ) ) * 256 + Math.round( clamp$1( _color.b * 255, 0, 255 ) );
}
getHexString( colorSpace = SRGBColorSpace ) {
return ( "000000" + this.getHex( colorSpace ).toString( 16 ) ).slice( - 6 );
}
getHSL( target, colorSpace = ColorManagement.workingColorSpace ) {
// h,s,l ranges are in 0.0 - 1.0
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
const r = _color.r, g = _color.g, b = _color.b;
const max = Math.max( r, g, b );
const min = Math.min( r, g, b );
let hue, saturation;
const lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
const delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
target.h = hue;
target.s = saturation;
target.l = lightness;
return target;
}
getRGB( target, colorSpace = ColorManagement.workingColorSpace ) {
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
target.r = _color.r;
target.g = _color.g;
target.b = _color.b;
return target;
}
getStyle( colorSpace = SRGBColorSpace ) {
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
const r = _color.r, g = _color.g, b = _color.b;
if ( colorSpace !== SRGBColorSpace ) {
// Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/).
return `color(${ colorSpace } ${ r.toFixed( 3 ) } ${ g.toFixed( 3 ) } ${ b.toFixed( 3 ) })`;
}
return `rgb(${ Math.round( r * 255 ) },${ Math.round( g * 255 ) },${ Math.round( b * 255 ) })`;
}
offsetHSL( h, s, l ) {
this.getHSL( _hslA );
_hslA.h += h; _hslA.s += s; _hslA.l += l;
this.setHSL( _hslA.h, _hslA.s, _hslA.l );
return this;
}
add( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
}
addColors( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
}
addScalar( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
}
sub( color ) {
this.r = Math.max( 0, this.r - color.r );
this.g = Math.max( 0, this.g - color.g );
this.b = Math.max( 0, this.b - color.b );
return this;
}
multiply( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
}
multiplyScalar( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
}
lerp( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
}
lerpColors( color1, color2, alpha ) {
this.r = color1.r + ( color2.r - color1.r ) * alpha;
this.g = color1.g + ( color2.g - color1.g ) * alpha;
this.b = color1.b + ( color2.b - color1.b ) * alpha;
return this;
}
lerpHSL( color, alpha ) {
this.getHSL( _hslA );
color.getHSL( _hslB );
const h = lerp( _hslA.h, _hslB.h, alpha );
const s = lerp( _hslA.s, _hslB.s, alpha );
const l = lerp( _hslA.l, _hslB.l, alpha );
this.setHSL( h, s, l );
return this;
}
setFromVector3( v ) {
this.r = v.x;
this.g = v.y;
this.b = v.z;
return this;
}
applyMatrix3( m ) {
const r = this.r, g = this.g, b = this.b;
const e = m.elements;
this.r = e[ 0 ] * r + e[ 3 ] * g + e[ 6 ] * b;
this.g = e[ 1 ] * r + e[ 4 ] * g + e[ 7 ] * b;
this.b = e[ 2 ] * r + e[ 5 ] * g + e[ 8 ] * b;
return this;
}
equals( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
}
fromArray( array, offset = 0 ) {
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
}
fromBufferAttribute( attribute, index ) {
this.r = attribute.getX( index );
this.g = attribute.getY( index );
this.b = attribute.getZ( index );
return this;
}
toJSON() {
return this.getHex();
}
*[ Symbol.iterator ]() {
yield this.r;
yield this.g;
yield this.b;
}
}
const _color = /*@__PURE__*/ new Color();
Color.NAMES = _colorKeywords;
class MeshBasicMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshBasicMaterial = true;
this.type = "MeshBasicMaterial";
this.color = new Color( 0xffffff ); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = "round";
this.wireframeLinejoin = "round";
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.fog = source.fog;
return this;
}
}
const _vector$8 = /*@__PURE__*/ new Vector3();
const _vector2$1 = /*@__PURE__*/ new Vector2();
class BufferAttribute {
constructor( array, itemSize, normalized = false ) {
if ( Array.isArray( array ) ) {
throw new TypeError( "THREE.BufferAttribute: array should be a Typed Array." );
}
this.isBufferAttribute = true;
this.name = "";
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized;
this.usage = StaticDrawUsage;
this.updateRange = { offset: 0, count: - 1 };
this.version = 0;
}
onUploadCallback() {}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
setUsage( value ) {
this.usage = value;
return this;
}
copy( source ) {
this.name = source.name;
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.usage = source.usage;
return this;
}
copyAt( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( let i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
}
copyArray( array ) {
this.array.set( array );
return this;
}
applyMatrix3( m ) {
if ( this.itemSize === 2 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector2$1.fromBufferAttribute( this, i );
_vector2$1.applyMatrix3( m );
this.setXY( i, _vector2$1.x, _vector2$1.y );
}
} else if ( this.itemSize === 3 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$8.fromBufferAttribute( this, i );
_vector$8.applyMatrix3( m );
this.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z );
}
}
return this;
}
applyMatrix4( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$8.fromBufferAttribute( this, i );
_vector$8.applyMatrix4( m );
this.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z );
}
return this;
}
applyNormalMatrix( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$8.fromBufferAttribute( this, i );
_vector$8.applyNormalMatrix( m );
this.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z );
}
return this;
}
transformDirection( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$8.fromBufferAttribute( this, i );
_vector$8.transformDirection( m );
this.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z );
}
return this;
}
set( value, offset = 0 ) {
// Matching BufferAttribute constructor, do not normalize the array.
this.array.set( value, offset );
return this;
}
getX( index ) {
let x = this.array[ index * this.itemSize ];
if ( this.normalized ) x = denormalize( x, this.array );
return x;
}
setX( index, x ) {
if ( this.normalized ) x = normalize( x, this.array );
this.array[ index * this.itemSize ] = x;
return this;
}
getY( index ) {
let y = this.array[ index * this.itemSize + 1 ];
if ( this.normalized ) y = denormalize( y, this.array );
return y;
}
setY( index, y ) {
if ( this.normalized ) y = normalize( y, this.array );
this.array[ index * this.itemSize + 1 ] = y;
return this;
}
getZ( index ) {
let z = this.array[ index * this.itemSize + 2 ];
if ( this.normalized ) z = denormalize( z, this.array );
return z;
}
setZ( index, z ) {
if ( this.normalized ) z = normalize( z, this.array );
this.array[ index * this.itemSize + 2 ] = z;
return this;
}
getW( index ) {
let w = this.array[ index * this.itemSize + 3 ];
if ( this.normalized ) w = denormalize( w, this.array );
return w;
}
setW( index, w ) {
if ( this.normalized ) w = normalize( w, this.array );
this.array[ index * this.itemSize + 3 ] = w;
return this;
}
setXY( index, x, y ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize( x, this.array );
y = normalize( y, this.array );
}
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
}
setXYZ( index, x, y, z ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize( x, this.array );
y = normalize( y, this.array );
z = normalize( z, this.array );
}
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
}
setXYZW( index, x, y, z, w ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize( x, this.array );
y = normalize( y, this.array );
z = normalize( z, this.array );
w = normalize( w, this.array );
}
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
}
onUpload( callback ) {
this.onUploadCallback = callback;
return this;
}
clone() {
return new this.constructor( this.array, this.itemSize ).copy( this );
}
toJSON() {
const data = {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: Array.from( this.array ),
normalized: this.normalized
};
if ( this.name !== "" ) data.name = this.name;
if ( this.usage !== StaticDrawUsage ) data.usage = this.usage;
if ( this.updateRange.offset !== 0 || this.updateRange.count !== - 1 ) data.updateRange = this.updateRange;
return data;
}
copyColorsArray() { // @deprecated, r144
console.error( "THREE.BufferAttribute: copyColorsArray() was removed in r144." );
}
copyVector2sArray() { // @deprecated, r144
console.error( "THREE.BufferAttribute: copyVector2sArray() was removed in r144." );
}
copyVector3sArray() { // @deprecated, r144
console.error( "THREE.BufferAttribute: copyVector3sArray() was removed in r144." );
}
copyVector4sArray() { // @deprecated, r144
console.error( "THREE.BufferAttribute: copyVector4sArray() was removed in r144." );
}
}
class Uint16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint16Array( array ), itemSize, normalized );
}
}
class Uint32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint32Array( array ), itemSize, normalized );
}
}
class Float32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Float32Array( array ), itemSize, normalized );
}
}
let _id$1 = 0;
const _m1 = /*@__PURE__*/ new Matrix4();
const _obj = /*@__PURE__*/ new Object3D();
const _offset = /*@__PURE__*/ new Vector3();
const _box$1 = /*@__PURE__*/ new Box3();
const _boxMorphTargets = /*@__PURE__*/ new Box3();
const _vector$7 = /*@__PURE__*/ new Vector3();
class BufferGeometry extends EventDispatcher {
constructor() {
super();
this.isBufferGeometry = true;
Object.defineProperty( this, "id", { value: _id$1 ++ } );
this.uuid = generateUUID();
this.name = "";
this.type = "BufferGeometry";
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.morphTargetsRelative = false;
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
this.userData = {};
}
getIndex() {
return this.index;
}
setIndex( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayNeedsUint32( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
return this;
}
getAttribute( name ) {
return this.attributes[ name ];
}
setAttribute( name, attribute ) {
this.attributes[ name ] = attribute;
return this;
}
deleteAttribute( name ) {
delete this.attributes[ name ];
return this;
}
hasAttribute( name ) {
return this.attributes[ name ] !== undefined;
}
addGroup( start, count, materialIndex = 0 ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex
} );
}
clearGroups() {
this.groups = [];
}
setDrawRange( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
}
applyMatrix4( matrix ) {
const position = this.attributes.position;
if ( position !== undefined ) {
position.applyMatrix4( matrix );
position.needsUpdate = true;
}
const normal = this.attributes.normal;
if ( normal !== undefined ) {
const normalMatrix = new Matrix3().getNormalMatrix( matrix );
normal.applyNormalMatrix( normalMatrix );
normal.needsUpdate = true;
}
const tangent = this.attributes.tangent;
if ( tangent !== undefined ) {
tangent.transformDirection( matrix );
tangent.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
}
applyQuaternion( q ) {
_m1.makeRotationFromQuaternion( q );
this.applyMatrix4( _m1 );
return this;
}
rotateX( angle ) {
// rotate geometry around world x-axis
_m1.makeRotationX( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateY( angle ) {
// rotate geometry around world y-axis
_m1.makeRotationY( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateZ( angle ) {
// rotate geometry around world z-axis
_m1.makeRotationZ( angle );
this.applyMatrix4( _m1 );
return this;
}
translate( x, y, z ) {
// translate geometry
_m1.makeTranslation( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
scale( x, y, z ) {
// scale geometry
_m1.makeScale( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
lookAt( vector ) {
_obj.lookAt( vector );
_obj.updateMatrix();
this.applyMatrix4( _obj.matrix );
return this;
}
center() {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset ).negate();
this.translate( _offset.x, _offset.y, _offset.z );
return this;
}
setFromPoints( points ) {
const position = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
position.push( point.x, point.y, point.z || 0 );
}
this.setAttribute( "position", new Float32BufferAttribute( position, 3 ) );
return this;
}
computeBoundingBox() {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( "THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".", this );
this.boundingBox.set(
new Vector3( - Infinity, - Infinity, - Infinity ),
new Vector3( + Infinity, + Infinity, + Infinity )
);
return;
}
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_box$1.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$7.addVectors( this.boundingBox.min, _box$1.min );
this.boundingBox.expandByPoint( _vector$7 );
_vector$7.addVectors( this.boundingBox.max, _box$1.max );
this.boundingBox.expandByPoint( _vector$7 );
} else {
this.boundingBox.expandByPoint( _box$1.min );
this.boundingBox.expandByPoint( _box$1.max );
}
}
}
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( "THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.", this );
}
}
computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( "THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".", this );
this.boundingSphere.set( new Vector3(), Infinity );
return;
}
if ( position ) {
// first, find the center of the bounding sphere
const center = this.boundingSphere.center;
_box$1.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_boxMorphTargets.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$7.addVectors( _box$1.min, _boxMorphTargets.min );
_box$1.expandByPoint( _vector$7 );
_vector$7.addVectors( _box$1.max, _boxMorphTargets.max );
_box$1.expandByPoint( _vector$7 );
} else {
_box$1.expandByPoint( _boxMorphTargets.min );
_box$1.expandByPoint( _boxMorphTargets.max );
}
}
}
_box$1.getCenter( center );
// second, try to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
let maxRadiusSq = 0;
for ( let i = 0, il = position.count; i < il; i ++ ) {
_vector$7.fromBufferAttribute( position, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$7 ) );
}
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
const morphTargetsRelative = this.morphTargetsRelative;
for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) {
_vector$7.fromBufferAttribute( morphAttribute, j );
if ( morphTargetsRelative ) {
_offset.fromBufferAttribute( position, j );
_vector$7.add( _offset );
}
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$7 ) );
}
}
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( "THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.", this );
}
}
}
computeTangents() {
const index = this.index;
const attributes = this.attributes;
// based on http://www.terathon.com/code/tangent.html
// (per vertex tangents)
if ( index === null ||
attributes.position === undefined ||
attributes.normal === undefined ||
attributes.uv === undefined ) {
console.error( "THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)" );
return;
}
const indices = index.array;
const positions = attributes.position.array;
const normals = attributes.normal.array;
const uvs = attributes.uv.array;
const nVertices = positions.length / 3;
if ( this.hasAttribute( "tangent" ) === false ) {
this.setAttribute( "tangent", new BufferAttribute( new Float32Array( 4 * nVertices ), 4 ) );
}
const tangents = this.getAttribute( "tangent" ).array;
const tan1 = [], tan2 = [];
for ( let i = 0; i < nVertices; i ++ ) {
tan1[ i ] = new Vector3();
tan2[ i ] = new Vector3();
}
const vA = new Vector3(),
vB = new Vector3(),
vC = new Vector3(),
uvA = new Vector2(),
uvB = new Vector2(),
uvC = new Vector2(),
sdir = new Vector3(),
tdir = new Vector3();
function handleTriangle( a, b, c ) {
vA.fromArray( positions, a * 3 );
vB.fromArray( positions, b * 3 );
vC.fromArray( positions, c * 3 );
uvA.fromArray( uvs, a * 2 );
uvB.fromArray( uvs, b * 2 );
uvC.fromArray( uvs, c * 2 );
vB.sub( vA );
vC.sub( vA );
uvB.sub( uvA );
uvC.sub( uvA );
const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y );
// silently ignore degenerate uv triangles having coincident or colinear vertices
if ( ! isFinite( r ) ) return;
sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r );
tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r );
tan1[ a ].add( sdir );
tan1[ b ].add( sdir );
tan1[ c ].add( sdir );
tan2[ a ].add( tdir );
tan2[ b ].add( tdir );
tan2[ c ].add( tdir );
}
let groups = this.groups;
if ( groups.length === 0 ) {
groups = [ {
start: 0,
count: indices.length
} ];
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleTriangle(
indices[ j + 0 ],
indices[ j + 1 ],
indices[ j + 2 ]
);
}
}
const tmp = new Vector3(), tmp2 = new Vector3();
const n = new Vector3(), n2 = new Vector3();
function handleVertex( v ) {
n.fromArray( normals, v * 3 );
n2.copy( n );
const t = tan1[ v ];
// Gram-Schmidt orthogonalize
tmp.copy( t );
tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize();
// Calculate handedness
tmp2.crossVectors( n2, t );
const test = tmp2.dot( tan2[ v ] );
const w = ( test < 0.0 ) ? - 1.0 : 1.0;
tangents[ v * 4 ] = tmp.x;
tangents[ v * 4 + 1 ] = tmp.y;
tangents[ v * 4 + 2 ] = tmp.z;
tangents[ v * 4 + 3 ] = w;
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleVertex( indices[ j + 0 ] );
handleVertex( indices[ j + 1 ] );
handleVertex( indices[ j + 2 ] );
}
}
}
computeVertexNormals() {
const index = this.index;
const positionAttribute = this.getAttribute( "position" );
if ( positionAttribute !== undefined ) {
let normalAttribute = this.getAttribute( "normal" );
if ( normalAttribute === undefined ) {
normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 );
this.setAttribute( "normal", normalAttribute );
} else {
// reset existing normals to zero
for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) {
normalAttribute.setXYZ( i, 0, 0, 0 );
}
}
const pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
const nA = new Vector3(), nB = new Vector3(), nC = new Vector3();
const cb = new Vector3(), ab = new Vector3();
// indexed elements
if ( index ) {
for ( let i = 0, il = index.count; i < il; i += 3 ) {
const vA = index.getX( i + 0 );
const vB = index.getX( i + 1 );
const vC = index.getX( i + 2 );
pA.fromBufferAttribute( positionAttribute, vA );
pB.fromBufferAttribute( positionAttribute, vB );
pC.fromBufferAttribute( positionAttribute, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
nA.fromBufferAttribute( normalAttribute, vA );
nB.fromBufferAttribute( normalAttribute, vB );
nC.fromBufferAttribute( normalAttribute, vC );
nA.add( cb );
nB.add( cb );
nC.add( cb );
normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z );
normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z );
normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z );
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) {
pA.fromBufferAttribute( positionAttribute, i + 0 );
pB.fromBufferAttribute( positionAttribute, i + 1 );
pC.fromBufferAttribute( positionAttribute, i + 2 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z );
}
}
this.normalizeNormals();
normalAttribute.needsUpdate = true;
}
}
merge() { // @deprecated, r144
console.error( "THREE.BufferGeometry.merge() has been removed. Use THREE.BufferGeometryUtils.mergeGeometries() instead." );
return this;
}
normalizeNormals() {
const normals = this.attributes.normal;
for ( let i = 0, il = normals.count; i < il; i ++ ) {
_vector$7.fromBufferAttribute( normals, i );
_vector$7.normalize();
normals.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z );
}
}
toNonIndexed() {
function convertBufferAttribute( attribute, indices ) {
const array = attribute.array;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array2 = new array.constructor( indices.length * itemSize );
let index = 0, index2 = 0;
for ( let i = 0, l = indices.length; i < l; i ++ ) {
if ( attribute.isInterleavedBufferAttribute ) {
index = indices[ i ] * attribute.data.stride + attribute.offset;
} else {
index = indices[ i ] * itemSize;
}
for ( let j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
return new BufferAttribute( array2, itemSize, normalized );
}
//
if ( this.index === null ) {
console.warn( "THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed." );
return this;
}
const geometry2 = new BufferGeometry();
const indices = this.index.array;
const attributes = this.attributes;
// attributes
for ( const name in attributes ) {
const attribute = attributes[ name ];
const newAttribute = convertBufferAttribute( attribute, indices );
geometry2.setAttribute( name, newAttribute );
}
// morph attributes
const morphAttributes = this.morphAttributes;
for ( const name in morphAttributes ) {
const morphArray = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {
const attribute = morphAttribute[ i ];
const newAttribute = convertBufferAttribute( attribute, indices );
morphArray.push( newAttribute );
}
geometry2.morphAttributes[ name ] = morphArray;
}
geometry2.morphTargetsRelative = this.morphTargetsRelative;
// groups
const groups = this.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
geometry2.addGroup( group.start, group.count, group.materialIndex );
}
return geometry2;
}
toJSON() {
const data = {
metadata: {
version: 4.5,
type: "BufferGeometry",
generator: "BufferGeometry.toJSON"
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== "" ) data.name = this.name;
if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;
if ( this.parameters !== undefined ) {
const parameters = this.parameters;
for ( const key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
// for simplicity the code assumes attributes are not shared across geometries, see #15811
data.data = { attributes: {} };
const index = this.index;
if ( index !== null ) {
data.data.index = {
type: index.array.constructor.name,
array: Array.prototype.slice.call( index.array )
};
}
const attributes = this.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
data.data.attributes[ key ] = attribute.toJSON( data.data );
}
const morphAttributes = {};
let hasMorphAttributes = false;
for ( const key in this.morphAttributes ) {
const attributeArray = this.morphAttributes[ key ];
const array = [];
for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {
const attribute = attributeArray[ i ];
array.push( attribute.toJSON( data.data ) );
}
if ( array.length > 0 ) {
morphAttributes[ key ] = array;
hasMorphAttributes = true;
}
}
if ( hasMorphAttributes ) {
data.data.morphAttributes = morphAttributes;
data.data.morphTargetsRelative = this.morphTargetsRelative;
}
const groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
const boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
// used for storing cloned, shared data
const data = {};
// name
this.name = source.name;
// index
const index = source.index;
if ( index !== null ) {
this.setIndex( index.clone( data ) );
}
// attributes
const attributes = source.attributes;
for ( const name in attributes ) {
const attribute = attributes[ name ];
this.setAttribute( name, attribute.clone( data ) );
}
// morph attributes
const morphAttributes = source.morphAttributes;
for ( const name in morphAttributes ) {
const array = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) {
array.push( morphAttribute[ i ].clone( data ) );
}
this.morphAttributes[ name ] = array;
}
this.morphTargetsRelative = source.morphTargetsRelative;
// groups
const groups = source.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
// bounding box
const boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
const boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count;
// user data
this.userData = source.userData;
return this;
}
dispose() {
this.dispatchEvent( { type: "dispose" } );
}
}
const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4();
const _ray$2 = /*@__PURE__*/ new Ray();
const _sphere$4 = /*@__PURE__*/ new Sphere();
const _sphereHitAt = /*@__PURE__*/ new Vector3();
const _vA$1 = /*@__PURE__*/ new Vector3();
const _vB$1 = /*@__PURE__*/ new Vector3();
const _vC$1 = /*@__PURE__*/ new Vector3();
const _tempA = /*@__PURE__*/ new Vector3();
const _morphA = /*@__PURE__*/ new Vector3();
const _uvA$1 = /*@__PURE__*/ new Vector2();
const _uvB$1 = /*@__PURE__*/ new Vector2();
const _uvC$1 = /*@__PURE__*/ new Vector2();
const _normalA = /*@__PURE__*/ new Vector3();
const _normalB = /*@__PURE__*/ new Vector3();
const _normalC = /*@__PURE__*/ new Vector3();
const _intersectionPoint = /*@__PURE__*/ new Vector3();
const _intersectionPointWorld = /*@__PURE__*/ new Vector3();
class Mesh extends Object3D {
constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) {
super();
this.isMesh = true;
this.type = "Mesh";
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy( source, recursive ) {
super.copy( source, recursive );
if ( source.morphTargetInfluences !== undefined ) {
this.morphTargetInfluences = source.morphTargetInfluences.slice();
}
if ( source.morphTargetDictionary !== undefined ) {
this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );
}
this.material = source.material;
this.geometry = source.geometry;
return this;
}
updateMorphTargets() {
const geometry = this.geometry;
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
}
getVertexPosition( index, target ) {
const geometry = this.geometry;
const position = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
target.fromBufferAttribute( position, index );
const morphInfluences = this.morphTargetInfluences;
if ( morphPosition && morphInfluences ) {
_morphA.set( 0, 0, 0 );
for ( let i = 0, il = morphPosition.length; i < il; i ++ ) {
const influence = morphInfluences[ i ];
const morphAttribute = morphPosition[ i ];
if ( influence === 0 ) continue;
_tempA.fromBufferAttribute( morphAttribute, index );
if ( morphTargetsRelative ) {
_morphA.addScaledVector( _tempA, influence );
} else {
_morphA.addScaledVector( _tempA.sub( target ), influence );
}
}
target.add( _morphA );
}
return target;
}
raycast( raycaster, intersects ) {
const geometry = this.geometry;
const material = this.material;
const matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$4.copy( geometry.boundingSphere );
_sphere$4.applyMatrix4( matrixWorld );
_ray$2.copy( raycaster.ray ).recast( raycaster.near );
if ( _sphere$4.containsPoint( _ray$2.origin ) === false ) {
if ( _ray$2.intersectSphere( _sphere$4, _sphereHitAt ) === null ) return;
if ( _ray$2.origin.distanceToSquared( _sphereHitAt ) > ( raycaster.far - raycaster.near ) ** 2 ) return;
}
//
_inverseMatrix$2.copy( matrixWorld ).invert();
_ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );
// Check boundingBox before continuing
if ( geometry.boundingBox !== null ) {
if ( _ray$2.intersectsBox( geometry.boundingBox ) === false ) return;
}
this._computeIntersections( raycaster, intersects );
}
_computeIntersections( raycaster, intersects ) {
let intersection;
const geometry = this.geometry;
const material = this.material;
const index = geometry.index;
const position = geometry.attributes.position;
const uv = geometry.attributes.uv;
const uv1 = geometry.attributes.uv1;
const normal = geometry.attributes.normal;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
if ( index !== null ) {
// indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( index.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = index.getX( j );
const b = index.getX( j + 1 );
const c = index.getX( j + 2 );
intersection = checkGeometryIntersection( this, groupMaterial, raycaster, _ray$2, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = index.getX( i );
const b = index.getX( i + 1 );
const c = index.getX( i + 2 );
intersection = checkGeometryIntersection( this, material, raycaster, _ray$2, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
intersects.push( intersection );
}
}
}
} else if ( position !== undefined ) {
// non-indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( position.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = j;
const b = j + 1;
const c = j + 2;
intersection = checkGeometryIntersection( this, groupMaterial, raycaster, _ray$2, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( position.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = i;
const b = i + 1;
const c = i + 2;
intersection = checkGeometryIntersection( this, material, raycaster, _ray$2, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
intersects.push( intersection );
}
}
}
}
}
}
function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {
let intersect;
if ( material.side === BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, ( material.side === FrontSide ), point );
}
if ( intersect === null ) return null;
_intersectionPointWorld.copy( point );
_intersectionPointWorld.applyMatrix4( object.matrixWorld );
const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: _intersectionPointWorld.clone(),
object: object
};
}
function checkGeometryIntersection( object, material, raycaster, ray, uv, uv1, normal, a, b, c ) {
object.getVertexPosition( a, _vA$1 );
object.getVertexPosition( b, _vB$1 );
object.getVertexPosition( c, _vC$1 );
const intersection = checkIntersection( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint );
if ( intersection ) {
if ( uv ) {
_uvA$1.fromBufferAttribute( uv, a );
_uvB$1.fromBufferAttribute( uv, b );
_uvC$1.fromBufferAttribute( uv, c );
intersection.uv = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() );
}
if ( uv1 ) {
_uvA$1.fromBufferAttribute( uv1, a );
_uvB$1.fromBufferAttribute( uv1, b );
_uvC$1.fromBufferAttribute( uv1, c );
intersection.uv1 = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() );
intersection.uv2 = intersection.uv1; // Backwards compatibility
}
if ( normal ) {
_normalA.fromBufferAttribute( normal, a );
_normalB.fromBufferAttribute( normal, b );
_normalC.fromBufferAttribute( normal, c );
intersection.normal = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _normalA, _normalB, _normalC, new Vector3() );
if ( intersection.normal.dot( ray.direction ) > 0 ) {
intersection.normal.multiplyScalar( - 1 );
}
}
const face = {
a: a,
b: b,
c: c,
normal: new Vector3(),
materialIndex: 0
};
Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal );
intersection.face = face;
}
return intersection;
}
class BoxGeometry extends BufferGeometry {
constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) {
super();
this.type = "BoxGeometry";
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
const scope = this;
// segments
widthSegments = Math.floor( widthSegments );
heightSegments = Math.floor( heightSegments );
depthSegments = Math.floor( depthSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let numberOfVertices = 0;
let groupStart = 0;
// build each side of the box geometry
buildPlane( "z", "y", "x", - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( "z", "y", "x", 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( "x", "z", "y", 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( "x", "z", "y", 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( "x", "y", "z", 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( "x", "y", "z", - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( indices );
this.setAttribute( "position", new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( "normal", new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( "uv", new Float32BufferAttribute( uvs, 2 ) );
function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
const segmentWidth = width / gridX;
const segmentHeight = height / gridY;
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
let vertexCounter = 0;
let groupCount = 0;
const vector = new Vector3();
// generate vertices, normals and uvs
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segmentHeight - heightHalf;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices.push( vector.x, vector.y, vector.z );
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals.push( vector.x, vector.y, vector.z );
// uvs
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
// counters
vertexCounter += 1;
}
}
// indices
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = numberOfVertices + ix + gridX1 * iy;
const b = numberOfVertices + ix + gridX1 * ( iy + 1 );
const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// increase counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments );
}
}
/**
* Uniform Utilities
*/
function cloneUniforms( src ) {
const dst = {};
for ( const u in src ) {
dst[ u ] = {};
for ( const p in src[ u ] ) {
const property = src[ u ][ p ];
if ( property && ( property.isColor ||
property.isMatrix3 || property.isMatrix4 ||
property.isVector2 || property.isVector3 || property.isVector4 ||
property.isTexture || property.isQuaternion ) ) {
if ( property.isRenderTargetTexture ) {
console.warn( "UniformsUtils: Textures of render targets cannot be cloned via cloneUniforms() or mergeUniforms()." );
dst[ u ][ p ] = null;
} else {
dst[ u ][ p ] = property.clone();
}
} else if ( Array.isArray( property ) ) {
dst[ u ][ p ] = property.slice();
} else {
dst[ u ][ p ] = property;
}
}
}
return dst;
}
function mergeUniforms( uniforms ) {
const merged = {};
for ( let u = 0; u < uniforms.length; u ++ ) {
const tmp = cloneUniforms( uniforms[ u ] );
for ( const p in tmp ) {
merged[ p ] = tmp[ p ];
}
}
return merged;
}
function cloneUniformsGroups( src ) {
const dst = [];
for ( let u = 0; u < src.length; u ++ ) {
dst.push( src[ u ].clone() );
}
return dst;
}
function getUnlitUniformColorSpace( renderer ) {
if ( renderer.getRenderTarget() === null ) {
// https://github.com/mrdoob/three.js/pull/23937#issuecomment-1111067398
return renderer.outputColorSpace;
}
return LinearSRGBColorSpace;
}
// Legacy
const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms };
var default_vertex = "void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}";
var default_fragment = "void main() {
gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );
}";
class ShaderMaterial extends Material {
constructor( parameters ) {
super();
this.isShaderMaterial = true;
this.type = "ShaderMaterial";
this.defines = {};
this.uniforms = {};
this.uniformsGroups = [];
this.vertexShader = default_vertex;
this.fragmentShader = default_fragment;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.forceSinglePass = true;
this.extensions = {
derivatives: false, // set to use derivatives
fragDepth: false, // set to use fragment depth values
drawBuffers: false, // set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
};
// When rendered geometry doesn"t include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
"color": [ 1, 1, 1 ],
"uv": [ 0, 0 ],
"uv1": [ 0, 0 ]
};
this.index0AttributeName = undefined;
this.uniformsNeedUpdate = false;
this.glslVersion = null;
if ( parameters !== undefined ) {
this.setValues( parameters );
}
}
copy( source ) {
super.copy( source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = cloneUniforms( source.uniforms );
this.uniformsGroups = cloneUniformsGroups( source.uniformsGroups );
this.defines = Object.assign( {}, source.defines );
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.fog = source.fog;
this.lights = source.lights;
this.clipping = source.clipping;
this.extensions = Object.assign( {}, source.extensions );
this.glslVersion = source.glslVersion;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.glslVersion = this.glslVersion;
data.uniforms = {};
for ( const name in this.uniforms ) {
const uniform = this.uniforms[ name ];
const value = uniform.value;
if ( value && value.isTexture ) {
data.uniforms[ name ] = {
type: "t",
value: value.toJSON( meta ).uuid
};
} else if ( value && value.isColor ) {
data.uniforms[ name ] = {
type: "c",
value: value.getHex()
};
} else if ( value && value.isVector2 ) {
data.uniforms[ name ] = {
type: "v2",
value: value.toArray()
};
} else if ( value && value.isVector3 ) {
data.uniforms[ name ] = {
type: "v3",
value: value.toArray()
};
} else if ( value && value.isVector4 ) {
data.uniforms[ name ] = {
type: "v4",
value: value.toArray()
};
} else if ( value && value.isMatrix3 ) {
data.uniforms[ name ] = {
type: "m3",
value: value.toArray()
};
} else if ( value && value.isMatrix4 ) {
data.uniforms[ name ] = {
type: "m4",
value: value.toArray()
};
} else {
data.uniforms[ name ] = {
value: value
};
// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
}
}
if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
data.lights = this.lights;
data.clipping = this.clipping;
const extensions = {};
for ( const key in this.extensions ) {
if ( this.extensions[ key ] === true ) extensions[ key ] = true;
}
if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions;
return data;
}
}
let Camera$2 = class Camera extends Object3D {
constructor() {
super();
this.isCamera = true;
this.type = "Camera";
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
this.projectionMatrixInverse = new Matrix4();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
this.projectionMatrixInverse.copy( source.projectionMatrixInverse );
return this;
}
getWorldDirection( target ) {
this.updateWorldMatrix( true, false );
const e = this.matrixWorld.elements;
return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize();
}
updateMatrixWorld( force ) {
super.updateMatrixWorld( force );
this.matrixWorldInverse.copy( this.matrixWorld ).invert();
}
updateWorldMatrix( updateParents, updateChildren ) {
super.updateWorldMatrix( updateParents, updateChildren );
this.matrixWorldInverse.copy( this.matrixWorld ).invert();
}
clone() {
return new this.constructor().copy( this );
}
};
let PerspectiveCamera$1 = class PerspectiveCamera extends Camera$2 {
constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) {
super();
this.isPerspectiveCamera = true;
this.type = "PerspectiveCamera";
this.fov = fov;
this.zoom = 1;
this.near = near;
this.far = far;
this.focus = 10;
this.aspect = aspect;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
}
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength( focalLength ) {
/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = RAD2DEG$1 * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
}
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength() {
const vExtentSlope = Math.tan( DEG2RAD$1 * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
}
getEffectiveFOV() {
return RAD2DEG$1 * 2 * Math.atan(
Math.tan( DEG2RAD$1 * 0.5 * this.fov ) / this.zoom );
}
getFilmWidth() {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
}
getFilmHeight() {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
}
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* const w = 1920;
* const h = 1080;
* const fullWidth = w * 3;
* const fullHeight = h * 2;
*
* --A--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
if ( this.view === null ) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
}
clearViewOffset() {
if ( this.view !== null ) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
}
updateProjectionMatrix() {
const near = this.near;
let top = near * Math.tan( DEG2RAD$1 * 0.5 * this.fov ) / this.zoom;
let height = 2 * top;
let width = this.aspect * height;
let left = - 0.5 * width;
const view = this.view;
if ( this.view !== null && this.view.enabled ) {
const fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
const skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );
this.projectionMatrixInverse.copy( this.projectionMatrix ).invert();
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
};
const fov = - 90; // negative fov is not an error
const aspect = 1;
class CubeCamera extends Object3D {
constructor( near, far, renderTarget ) {
super();
this.type = "CubeCamera";
this.renderTarget = renderTarget;
const cameraPX = new PerspectiveCamera$1( fov, aspect, near, far );
cameraPX.layers = this.layers;
cameraPX.up.set( 0, 1, 0 );
cameraPX.lookAt( 1, 0, 0 );
this.add( cameraPX );
const cameraNX = new PerspectiveCamera$1( fov, aspect, near, far );
cameraNX.layers = this.layers;
cameraNX.up.set( 0, 1, 0 );
cameraNX.lookAt( - 1, 0, 0 );
this.add( cameraNX );
const cameraPY = new PerspectiveCamera$1( fov, aspect, near, far );
cameraPY.layers = this.layers;
cameraPY.up.set( 0, 0, - 1 );
cameraPY.lookAt( 0, 1, 0 );
this.add( cameraPY );
const cameraNY = new PerspectiveCamera$1( fov, aspect, near, far );
cameraNY.layers = this.layers;
cameraNY.up.set( 0, 0, 1 );
cameraNY.lookAt( 0, - 1, 0 );
this.add( cameraNY );
const cameraPZ = new PerspectiveCamera$1( fov, aspect, near, far );
cameraPZ.layers = this.layers;
cameraPZ.up.set( 0, 1, 0 );
cameraPZ.lookAt( 0, 0, 1 );
this.add( cameraPZ );
const cameraNZ = new PerspectiveCamera$1( fov, aspect, near, far );
cameraNZ.layers = this.layers;
cameraNZ.up.set( 0, 1, 0 );
cameraNZ.lookAt( 0, 0, - 1 );
this.add( cameraNZ );
}
update( renderer, scene ) {
if ( this.parent === null ) this.updateMatrixWorld();
const renderTarget = this.renderTarget;
const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children;
const currentRenderTarget = renderer.getRenderTarget();
const currentToneMapping = renderer.toneMapping;
const currentXrEnabled = renderer.xr.enabled;
renderer.toneMapping = NoToneMapping;
renderer.xr.enabled = false;
const generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderer.setRenderTarget( renderTarget, 0 );
renderer.render( scene, cameraPX );
renderer.setRenderTarget( renderTarget, 1 );
renderer.render( scene, cameraNX );
renderer.setRenderTarget( renderTarget, 2 );
renderer.render( scene, cameraPY );
renderer.setRenderTarget( renderTarget, 3 );
renderer.render( scene, cameraNY );
renderer.setRenderTarget( renderTarget, 4 );
renderer.render( scene, cameraPZ );
renderTarget.texture.generateMipmaps = generateMipmaps;
renderer.setRenderTarget( renderTarget, 5 );
renderer.render( scene, cameraNZ );
renderer.setRenderTarget( currentRenderTarget );
renderer.toneMapping = currentToneMapping;
renderer.xr.enabled = currentXrEnabled;
renderTarget.texture.needsPMREMUpdate = true;
}
}
class CubeTexture extends Texture {
constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace );
this.isCubeTexture = true;
this.flipY = false;
}
get images() {
return this.image;
}
set images( value ) {
this.image = value;
}
}
class WebGLCubeRenderTarget extends WebGLRenderTarget {
constructor( size = 1, options = {} ) {
super( size, size, options );
this.isWebGLCubeRenderTarget = true;
const image = { width: size, height: size, depth: 1 };
const images = [ image, image, image, image, image, image ];
if ( options.encoding !== undefined ) {
// @deprecated, r152
warnOnce( "THREE.WebGLCubeRenderTarget: option.encoding has been replaced by option.colorSpace." );
options.colorSpace = options.encoding === sRGBEncoding ? SRGBColorSpace : NoColorSpace;
}
this.texture = new CubeTexture( images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace );
// By convention -- likely based on the RenderMan spec from the 1990"s -- cube maps are specified by WebGL (and three.js)
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
// and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
// as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
this.texture.isRenderTargetTexture = true;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
}
fromEquirectangularTexture( renderer, texture ) {
this.texture.type = texture.type;
this.texture.colorSpace = texture.colorSpace;
this.texture.generateMipmaps = texture.generateMipmaps;
this.texture.minFilter = texture.minFilter;
this.texture.magFilter = texture.magFilter;
const shader = {
uniforms: {
tEquirect: { value: null },
},
vertexShader: /* glsl */`
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include
#include
}
`,
fragmentShader: /* glsl */`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`
};
const geometry = new BoxGeometry( 5, 5, 5 );
const material = new ShaderMaterial( {
name: "CubemapFromEquirect",
uniforms: cloneUniforms( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
side: BackSide,
blending: NoBlending
} );
material.uniforms.tEquirect.value = texture;
const mesh = new Mesh( geometry, material );
const currentMinFilter = texture.minFilter;
// Avoid blurred poles
if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter;
const camera = new CubeCamera( 1, 10, this );
camera.update( renderer, mesh );
texture.minFilter = currentMinFilter;
mesh.geometry.dispose();
mesh.material.dispose();
return this;
}
clear( renderer, color, depth, stencil ) {
const currentRenderTarget = renderer.getRenderTarget();
for ( let i = 0; i < 6; i ++ ) {
renderer.setRenderTarget( this, i );
renderer.clear( color, depth, stencil );
}
renderer.setRenderTarget( currentRenderTarget );
}
}
const _vector1 = /*@__PURE__*/ new Vector3();
const _vector2 = /*@__PURE__*/ new Vector3();
const _normalMatrix = /*@__PURE__*/ new Matrix3();
class Plane {
constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) {
this.isPlane = true;
// normal is assumed to be normalized
this.normal = normal;
this.constant = constant;
}
set( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
}
setComponents( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
}
setFromNormalAndCoplanarPoint( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal );
return this;
}
setFromCoplanarPoints( a, b, c ) {
const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
}
copy( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
}
normalize() {
// Note: will lead to a divide by zero if the plane is invalid.
const inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
}
negate() {
this.constant *= - 1;
this.normal.negate();
return this;
}
distanceToPoint( point ) {
return this.normal.dot( point ) + this.constant;
}
distanceToSphere( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
}
projectPoint( point, target ) {
return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) );
}
intersectLine( line, target ) {
const direction = line.delta( _vector1 );
const denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return target.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return null;
}
const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return null;
}
return target.copy( line.start ).addScaledVector( direction, t );
}
intersectsLine( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
const startSign = this.distanceToPoint( line.start );
const endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
}
intersectsBox( box ) {
return box.intersectsPlane( this );
}
intersectsSphere( sphere ) {
return sphere.intersectsPlane( this );
}
coplanarPoint( target ) {
return target.copy( this.normal ).multiplyScalar( - this.constant );
}
applyMatrix4( matrix, optionalNormalMatrix ) {
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );
const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );
const normal = this.normal.applyMatrix3( normalMatrix ).normalize();
this.constant = - referencePoint.dot( normal );
return this;
}
translate( offset ) {
this.constant -= offset.dot( this.normal );
return this;
}
equals( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
clone() {
return new this.constructor().copy( this );
}
}
const _sphere$3 = /*@__PURE__*/ new Sphere();
const _vector$6 = /*@__PURE__*/ new Vector3();
class Frustum {
constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) {
this.planes = [ p0, p1, p2, p3, p4, p5 ];
}
set( p0, p1, p2, p3, p4, p5 ) {
const planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
}
copy( frustum ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
}
setFromProjectionMatrix( m ) {
const planes = this.planes;
const me = m.elements;
const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
return this;
}
intersectsObject( object ) {
if ( object.boundingSphere !== undefined ) {
if ( object.boundingSphere === null ) object.computeBoundingSphere();
_sphere$3.copy( object.boundingSphere ).applyMatrix4( object.matrixWorld );
} else {
const geometry = object.geometry;
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$3.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );
}
return this.intersectsSphere( _sphere$3 );
}
intersectsSprite( sprite ) {
_sphere$3.center.set( 0, 0, 0 );
_sphere$3.radius = 0.7071067811865476;
_sphere$3.applyMatrix4( sprite.matrixWorld );
return this.intersectsSphere( _sphere$3 );
}
intersectsSphere( sphere ) {
const planes = this.planes;
const center = sphere.center;
const negRadius = - sphere.radius;
for ( let i = 0; i < 6; i ++ ) {
const distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
}
intersectsBox( box ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
const plane = planes[ i ];
// corner at max distance
_vector$6.x = plane.normal.x > 0 ? box.max.x : box.min.x;
_vector$6.y = plane.normal.y > 0 ? box.max.y : box.min.y;
_vector$6.z = plane.normal.z > 0 ? box.max.z : box.min.z;
if ( plane.distanceToPoint( _vector$6 ) < 0 ) {
return false;
}
}
return true;
}
containsPoint( point ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
clone() {
return new this.constructor().copy( this );
}
}
function WebGLAnimation() {
let context = null;
let isAnimating = false;
let animationLoop = null;
let requestId = null;
function onAnimationFrame( time, frame ) {
animationLoop( time, frame );
requestId = context.requestAnimationFrame( onAnimationFrame );
}
return {
start: function () {
if ( isAnimating === true ) return;
if ( animationLoop === null ) return;
requestId = context.requestAnimationFrame( onAnimationFrame );
isAnimating = true;
},
stop: function () {
context.cancelAnimationFrame( requestId );
isAnimating = false;
},
setAnimationLoop: function ( callback ) {
animationLoop = callback;
},
setContext: function ( value ) {
context = value;
}
};
}
function WebGLAttributes( gl, capabilities ) {
const isWebGL2 = capabilities.isWebGL2;
const buffers = new WeakMap();
function createBuffer( attribute, bufferType ) {
const array = attribute.array;
const usage = attribute.usage;
const buffer = gl.createBuffer();
gl.bindBuffer( bufferType, buffer );
gl.bufferData( bufferType, array, usage );
attribute.onUploadCallback();
let type;
if ( array instanceof Float32Array ) {
type = gl.FLOAT;
} else if ( array instanceof Uint16Array ) {
if ( attribute.isFloat16BufferAttribute ) {
if ( isWebGL2 ) {
type = gl.HALF_FLOAT;
} else {
throw new Error( "THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2." );
}
} else {
type = gl.UNSIGNED_SHORT;
}
} else if ( array instanceof Int16Array ) {
type = gl.SHORT;
} else if ( array instanceof Uint32Array ) {
type = gl.UNSIGNED_INT;
} else if ( array instanceof Int32Array ) {
type = gl.INT;
} else if ( array instanceof Int8Array ) {
type = gl.BYTE;
} else if ( array instanceof Uint8Array ) {
type = gl.UNSIGNED_BYTE;
} else if ( array instanceof Uint8ClampedArray ) {
type = gl.UNSIGNED_BYTE;
} else {
throw new Error( "THREE.WebGLAttributes: Unsupported buffer data format: " + array );
}
return {
buffer: buffer,
type: type,
bytesPerElement: array.BYTES_PER_ELEMENT,
version: attribute.version
};
}
function updateBuffer( buffer, attribute, bufferType ) {
const array = attribute.array;
const updateRange = attribute.updateRange;
gl.bindBuffer( bufferType, buffer );
if ( updateRange.count === - 1 ) {
// Not using update ranges
gl.bufferSubData( bufferType, 0, array );
} else {
if ( isWebGL2 ) {
gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
array, updateRange.offset, updateRange.count );
} else {
gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );
}
updateRange.count = - 1; // reset range
}
attribute.onUploadCallback();
}
//
function get( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
return buffers.get( attribute );
}
function remove( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
const data = buffers.get( attribute );
if ( data ) {
gl.deleteBuffer( data.buffer );
buffers.delete( attribute );
}
}
function update( attribute, bufferType ) {
if ( attribute.isGLBufferAttribute ) {
const cached = buffers.get( attribute );
if ( ! cached || cached.version < attribute.version ) {
buffers.set( attribute, {
buffer: attribute.buffer,
type: attribute.type,
bytesPerElement: attribute.elementSize,
version: attribute.version
} );
}
return;
}
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
const data = buffers.get( attribute );
if ( data === undefined ) {
buffers.set( attribute, createBuffer( attribute, bufferType ) );
} else if ( data.version < attribute.version ) {
updateBuffer( data.buffer, attribute, bufferType );
data.version = attribute.version;
}
}
return {
get: get,
remove: remove,
update: update
};
}
class PlaneGeometry extends BufferGeometry {
constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) {
super();
this.type = "PlaneGeometry";
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
const width_half = width / 2;
const height_half = height / 2;
const gridX = Math.floor( widthSegments );
const gridY = Math.floor( heightSegments );
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
const segment_width = width / gridX;
const segment_height = height / gridY;
//
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segment_height - height_half;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segment_width - width_half;
vertices.push( x, - y, 0 );
normals.push( 0, 0, 1 );
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
}
}
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = ix + gridX1 * iy;
const b = ix + gridX1 * ( iy + 1 );
const c = ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = ( ix + 1 ) + gridX1 * iy;
indices.push( a, b, d );
indices.push( b, c, d );
}
}
this.setIndex( indices );
this.setAttribute( "position", new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( "normal", new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( "uv", new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments );
}
}
var alphamap_fragment = "#ifdef USE_ALPHAMAP
diffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;
#endif";
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif";
var alphatest_fragment = "#ifdef USE_ALPHATEST
if ( diffuseColor.a < alphaTest ) discard;
#endif";
var alphatest_pars_fragment = "#ifdef USE_ALPHATEST
uniform float alphaTest;
#endif";
var aomap_fragment = "#ifdef USE_AOMAP
float ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;
reflectedLight.indirectDiffuse *= ambientOcclusion;
#if defined( USE_ENVMAP ) && defined( STANDARD )
float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );
reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );
#endif
#endif";
var aomap_pars_fragment = "#ifdef USE_AOMAP
uniform sampler2D aoMap;
uniform float aoMapIntensity;
#endif";
var begin_vertex = "vec3 transformed = vec3( position );";
var beginnormal_vertex = "vec3 objectNormal = vec3( normal );
#ifdef USE_TANGENT
vec3 objectTangent = vec3( tangent.xyz );
#endif";
var bsdfs = "float G_BlinnPhong_Implicit( ) {
return 0.25;
}
float D_BlinnPhong( const in float shininess, const in float dotNH ) {
return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );
}
vec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {
vec3 halfDir = normalize( lightDir + viewDir );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( specularColor, 1.0, dotVH );
float G = G_BlinnPhong_Implicit( );
float D = D_BlinnPhong( shininess, dotNH );
return F * ( G * D );
} // validated";
var iridescence_fragment = "#ifdef USE_IRIDESCENCE
const mat3 XYZ_TO_REC709 = mat3(
3.2404542, -0.9692660, 0.0556434,
-1.5371385, 1.8760108, -0.2040259,
-0.4985314, 0.0415560, 1.0572252
);
vec3 Fresnel0ToIor( vec3 fresnel0 ) {
vec3 sqrtF0 = sqrt( fresnel0 );
return ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );
}
vec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {
return pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );
}
float IorToFresnel0( float transmittedIor, float incidentIor ) {
return pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));
}
vec3 evalSensitivity( float OPD, vec3 shift ) {
float phase = 2.0 * PI * OPD * 1.0e-9;
vec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );
vec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );
vec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );
vec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );
xyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );
xyz /= 1.0685e-7;
vec3 rgb = XYZ_TO_REC709 * xyz;
return rgb;
}
vec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {
vec3 I;
float iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );
float sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );
float cosTheta2Sq = 1.0 - sinTheta2Sq;
if ( cosTheta2Sq < 0.0 ) {
return vec3( 1.0 );
}
float cosTheta2 = sqrt( cosTheta2Sq );
float R0 = IorToFresnel0( iridescenceIOR, outsideIOR );
float R12 = F_Schlick( R0, 1.0, cosTheta1 );
float R21 = R12;
float T121 = 1.0 - R12;
float phi12 = 0.0;
if ( iridescenceIOR < outsideIOR ) phi12 = PI;
float phi21 = PI - phi12;
vec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) ); vec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );
vec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );
vec3 phi23 = vec3( 0.0 );
if ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;
if ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;
if ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;
float OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;
vec3 phi = vec3( phi21 ) + phi23;
vec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );
vec3 r123 = sqrt( R123 );
vec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );
vec3 C0 = R12 + Rs;
I = C0;
vec3 Cm = Rs - T121;
for ( int m = 1; m <= 2; ++ m ) {
Cm *= r123;
vec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );
I += Cm * Sm;
}
return max( I, vec3( 0.0 ) );
}
#endif";
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP
uniform sampler2D bumpMap;
uniform float bumpScale;
vec2 dHdxy_fwd() {
vec2 dSTdx = dFdx( vBumpMapUv );
vec2 dSTdy = dFdy( vBumpMapUv );
float Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;
float dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;
float dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;
return vec2( dBx, dBy );
}
vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {
vec3 vSigmaX = dFdx( surf_pos.xyz );
vec3 vSigmaY = dFdy( surf_pos.xyz );
vec3 vN = surf_norm;
vec3 R1 = cross( vSigmaY, vN );
vec3 R2 = cross( vN, vSigmaX );
float fDet = dot( vSigmaX, R1 ) * faceDirection;
vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );
return normalize( abs( fDet ) * surf_norm - vGrad );
}
#endif";
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0
vec4 plane;
#pragma unroll_loop_start
for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;
}
#pragma unroll_loop_end
#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES
bool clipped = true;
#pragma unroll_loop_start
for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;
}
#pragma unroll_loop_end
if ( clipped ) discard;
#endif
#endif";
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0
varying vec3 vClipPosition;
uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];
#endif";
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0
varying vec3 vClipPosition;
#endif";
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0
vClipPosition = - mvPosition.xyz;
#endif";
var color_fragment = "#if defined( USE_COLOR_ALPHA )
diffuseColor *= vColor;
#elif defined( USE_COLOR )
diffuseColor.rgb *= vColor;
#endif";
var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )
varying vec4 vColor;
#elif defined( USE_COLOR )
varying vec3 vColor;
#endif";
var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )
varying vec4 vColor;
#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )
varying vec3 vColor;
#endif";
var color_vertex = "#if defined( USE_COLOR_ALPHA )
vColor = vec4( 1.0 );
#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )
vColor = vec3( 1.0 );
#endif
#ifdef USE_COLOR
vColor *= color;
#endif
#ifdef USE_INSTANCING_COLOR
vColor.xyz *= instanceColor.xyz;
#endif";
var common$2 = "#define PI 3.141592653589793
#define PI2 6.283185307179586
#define PI_HALF 1.5707963267948966
#define RECIPROCAL_PI 0.3183098861837907
#define RECIPROCAL_PI2 0.15915494309189535
#define EPSILON 1e-6
#ifndef saturate
#define saturate( a ) clamp( a, 0.0, 1.0 )
#endif
#define whiteComplement( a ) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
vec3 pow2( const in vec3 x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }
float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }
highp float rand( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract( sin( sn ) * c );
}
#ifdef HIGH_PRECISION
float precisionSafeLength( vec3 v ) { return length( v ); }
#else
float precisionSafeLength( vec3 v ) {
float maxComponent = max3( abs( v ) );
return length( v / maxComponent ) * maxComponent;
}
#endif
struct IncidentLight {
vec3 color;
vec3 direction;
bool visible;
};
struct ReflectedLight {
vec3 directDiffuse;
vec3 directSpecular;
vec3 indirectDiffuse;
vec3 indirectSpecular;
};
struct GeometricContext {
vec3 position;
vec3 normal;
vec3 viewDir;
#ifdef USE_CLEARCOAT
vec3 clearcoatNormal;
#endif
};
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
float luminance( const in vec3 rgb ) {
const vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 );
return dot( weights, rgb );
}
bool isPerspectiveMatrix( mat4 m ) {
return m[ 2 ][ 3 ] == - 1.0;
}
vec2 equirectUv( in vec3 dir ) {
float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;
float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;
return vec2( u, v );
}
vec3 BRDF_Lambert( const in vec3 diffuseColor ) {
return RECIPROCAL_PI * diffuseColor;
}
vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
}
float F_Schlick( const in float f0, const in float f90, const in float dotVH ) {
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
} // validated";
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV
#define cubeUV_minMipLevel 4.0
#define cubeUV_minTileSize 16.0
float getFace( vec3 direction ) {
vec3 absDirection = abs( direction );
float face = - 1.0;
if ( absDirection.x > absDirection.z ) {
if ( absDirection.x > absDirection.y )
face = direction.x > 0.0 ? 0.0 : 3.0;
else
face = direction.y > 0.0 ? 1.0 : 4.0;
} else {
if ( absDirection.z > absDirection.y )
face = direction.z > 0.0 ? 2.0 : 5.0;
else
face = direction.y > 0.0 ? 1.0 : 4.0;
}
return face;
}
vec2 getUV( vec3 direction, float face ) {
vec2 uv;
if ( face == 0.0 ) {
uv = vec2( direction.z, direction.y ) / abs( direction.x );
} else if ( face == 1.0 ) {
uv = vec2( - direction.x, - direction.z ) / abs( direction.y );
} else if ( face == 2.0 ) {
uv = vec2( - direction.x, direction.y ) / abs( direction.z );
} else if ( face == 3.0 ) {
uv = vec2( - direction.z, direction.y ) / abs( direction.x );
} else if ( face == 4.0 ) {
uv = vec2( - direction.x, direction.z ) / abs( direction.y );
} else {
uv = vec2( direction.x, direction.y ) / abs( direction.z );
}
return 0.5 * ( uv + 1.0 );
}
vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {
float face = getFace( direction );
float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );
mipInt = max( mipInt, cubeUV_minMipLevel );
float faceSize = exp2( mipInt );
highp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;
if ( face > 2.0 ) {
uv.y += faceSize;
face -= 3.0;
}
uv.x += face * faceSize;
uv.x += filterInt * 3.0 * cubeUV_minTileSize;
uv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );
uv.x *= CUBEUV_TEXEL_WIDTH;
uv.y *= CUBEUV_TEXEL_HEIGHT;
#ifdef texture2DGradEXT
return texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;
#else
return texture2D( envMap, uv ).rgb;
#endif
}
#define cubeUV_r0 1.0
#define cubeUV_v0 0.339
#define cubeUV_m0 - 2.0
#define cubeUV_r1 0.8
#define cubeUV_v1 0.276
#define cubeUV_m1 - 1.0
#define cubeUV_r4 0.4
#define cubeUV_v4 0.046
#define cubeUV_m4 2.0
#define cubeUV_r5 0.305
#define cubeUV_v5 0.016
#define cubeUV_m5 3.0
#define cubeUV_r6 0.21
#define cubeUV_v6 0.0038
#define cubeUV_m6 4.0
float roughnessToMip( float roughness ) {
float mip = 0.0;
if ( roughness >= cubeUV_r1 ) {
mip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;
} else if ( roughness >= cubeUV_r4 ) {
mip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;
} else if ( roughness >= cubeUV_r5 ) {
mip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;
} else if ( roughness >= cubeUV_r6 ) {
mip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;
} else {
mip = - 2.0 * log2( 1.16 * roughness ); }
return mip;
}
vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {
float mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );
float mipF = fract( mip );
float mipInt = floor( mip );
vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );
if ( mipF == 0.0 ) {
return vec4( color0, 1.0 );
} else {
vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );
return vec4( mix( color0, color1, mipF ), 1.0 );
}
}
#endif";
var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;
#ifdef USE_INSTANCING
mat3 m = mat3( instanceMatrix );
transformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );
transformedNormal = m * transformedNormal;
#endif
transformedNormal = normalMatrix * transformedNormal;
#ifdef FLIP_SIDED
transformedNormal = - transformedNormal;
#endif
#ifdef USE_TANGENT
vec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;
#ifdef FLIP_SIDED
transformedTangent = - transformedTangent;
#endif
#endif";
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP
uniform sampler2D displacementMap;
uniform float displacementScale;
uniform float displacementBias;
#endif";
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP
transformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );
#endif";
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP
vec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );
totalEmissiveRadiance *= emissiveColor.rgb;
#endif";
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP
uniform sampler2D emissiveMap;
#endif";
var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
var encodings_pars_fragment = "vec4 LinearToLinear( in vec4 value ) {
return value;
}
vec4 LinearTosRGB( in vec4 value ) {
return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );
}";
var envmap_fragment = "#ifdef USE_ENVMAP
#ifdef ENV_WORLDPOS
vec3 cameraToFrag;
if ( isOrthographic ) {
cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );
} else {
cameraToFrag = normalize( vWorldPosition - cameraPosition );
}
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
#ifdef ENVMAP_MODE_REFLECTION
vec3 reflectVec = reflect( cameraToFrag, worldNormal );
#else
vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );
#endif
#else
vec3 reflectVec = vReflect;
#endif
#ifdef ENVMAP_TYPE_CUBE
vec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
#else
vec4 envColor = vec4( 0.0 );
#endif
#ifdef ENVMAP_BLENDING_MULTIPLY
outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_MIX )
outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_ADD )
outgoingLight += envColor.xyz * specularStrength * reflectivity;
#endif
#endif";
var envmap_common_pars_fragment = "#ifdef USE_ENVMAP
uniform float envMapIntensity;
uniform float flipEnvMap;
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#else
uniform sampler2D envMap;
#endif
#endif";
var envmap_pars_fragment = "#ifdef USE_ENVMAP
uniform float reflectivity;
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )
#define ENV_WORLDPOS
#endif
#ifdef ENV_WORLDPOS
varying vec3 vWorldPosition;
uniform float refractionRatio;
#else
varying vec3 vReflect;
#endif
#endif";
var envmap_pars_vertex = "#ifdef USE_ENVMAP
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )
#define ENV_WORLDPOS
#endif
#ifdef ENV_WORLDPOS
varying vec3 vWorldPosition;
#else
varying vec3 vReflect;
uniform float refractionRatio;
#endif
#endif";
var envmap_vertex = "#ifdef USE_ENVMAP
#ifdef ENV_WORLDPOS
vWorldPosition = worldPosition.xyz;
#else
vec3 cameraToVertex;
if ( isOrthographic ) {
cameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );
} else {
cameraToVertex = normalize( worldPosition.xyz - cameraPosition );
}
vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );
#ifdef ENVMAP_MODE_REFLECTION
vReflect = reflect( cameraToVertex, worldNormal );
#else
vReflect = refract( cameraToVertex, worldNormal, refractionRatio );
#endif
#endif
#endif";
var fog_vertex = "#ifdef USE_FOG
vFogDepth = - mvPosition.z;
#endif";
var fog_pars_vertex = "#ifdef USE_FOG
varying float vFogDepth;
#endif";
var fog_fragment = "#ifdef USE_FOG
#ifdef FOG_EXP2
float fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );
#else
float fogFactor = smoothstep( fogNear, fogFar, vFogDepth );
#endif
gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );
#endif";
var fog_pars_fragment = "#ifdef USE_FOG
uniform vec3 fogColor;
varying float vFogDepth;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif";
var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP
uniform sampler2D gradientMap;
#endif
vec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {
float dotNL = dot( normal, lightDirection );
vec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );
#ifdef USE_GRADIENTMAP
return vec3( texture2D( gradientMap, coord ).r );
#else
vec2 fw = fwidth( coord ) * 0.5;
return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );
#endif
}";
var lightmap_fragment = "#ifdef USE_LIGHTMAP
vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );
vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;
reflectedLight.indirectDiffuse += lightMapIrradiance;
#endif";
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP
uniform sampler2D lightMap;
uniform float lightMapIntensity;
#endif";
var lights_lambert_fragment = "LambertMaterial material;
material.diffuseColor = diffuseColor.rgb;
material.specularStrength = specularStrength;";
var lights_lambert_pars_fragment = "varying vec3 vViewPosition;
struct LambertMaterial {
vec3 diffuseColor;
float specularStrength;
};
void RE_Direct_Lambert( const in IncidentLight directLight, const in GeometricContext geometry, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometry.normal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in GeometricContext geometry, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_Lambert
#define RE_IndirectDiffuse RE_IndirectDiffuse_Lambert";
var lights_pars_begin = "uniform bool receiveShadow;
uniform vec3 ambientLightColor;
uniform vec3 lightProbe[ 9 ];
vec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {
float x = normal.x, y = normal.y, z = normal.z;
vec3 result = shCoefficients[ 0 ] * 0.886227;
result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;
result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;
result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;
result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;
result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;
result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );
result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;
result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );
return result;
}
vec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );
return irradiance;
}
vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {
vec3 irradiance = ambientLightColor;
return irradiance;
}
float getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {
#if defined ( LEGACY_LIGHTS )
if ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {
return pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );
}
return 1.0;
#else
float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );
if ( cutoffDistance > 0.0 ) {
distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );
}
return distanceFalloff;
#endif
}
float getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {
return smoothstep( coneCosine, penumbraCosine, angleCosine );
}
#if NUM_DIR_LIGHTS > 0
struct DirectionalLight {
vec3 direction;
vec3 color;
};
uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];
void getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {
light.color = directionalLight.color;
light.direction = directionalLight.direction;
light.visible = true;
}
#endif
#if NUM_POINT_LIGHTS > 0
struct PointLight {
vec3 position;
vec3 color;
float distance;
float decay;
};
uniform PointLight pointLights[ NUM_POINT_LIGHTS ];
void getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {
vec3 lVector = pointLight.position - geometry.position;
light.direction = normalize( lVector );
float lightDistance = length( lVector );
light.color = pointLight.color;
light.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );
light.visible = ( light.color != vec3( 0.0 ) );
}
#endif
#if NUM_SPOT_LIGHTS > 0
struct SpotLight {
vec3 position;
vec3 direction;
vec3 color;
float distance;
float decay;
float coneCos;
float penumbraCos;
};
uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];
void getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {
vec3 lVector = spotLight.position - geometry.position;
light.direction = normalize( lVector );
float angleCos = dot( light.direction, spotLight.direction );
float spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );
if ( spotAttenuation > 0.0 ) {
float lightDistance = length( lVector );
light.color = spotLight.color * spotAttenuation;
light.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );
light.visible = ( light.color != vec3( 0.0 ) );
} else {
light.color = vec3( 0.0 );
light.visible = false;
}
}
#endif
#if NUM_RECT_AREA_LIGHTS > 0
struct RectAreaLight {
vec3 color;
vec3 position;
vec3 halfWidth;
vec3 halfHeight;
};
uniform sampler2D ltc_1; uniform sampler2D ltc_2;
uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];
#endif
#if NUM_HEMI_LIGHTS > 0
struct HemisphereLight {
vec3 direction;
vec3 skyColor;
vec3 groundColor;
};
uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];
vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {
float dotNL = dot( normal, hemiLight.direction );
float hemiDiffuseWeight = 0.5 * dotNL + 0.5;
vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );
return irradiance;
}
#endif";
var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )
vec3 getIBLIrradiance( const in vec3 normal ) {
#if defined( ENVMAP_TYPE_CUBE_UV )
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
vec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );
return PI * envMapColor.rgb * envMapIntensity;
#else
return vec3( 0.0 );
#endif
}
vec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {
#if defined( ENVMAP_TYPE_CUBE_UV )
vec3 reflectVec = reflect( - viewDir, normal );
reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );
reflectVec = inverseTransformDirection( reflectVec, viewMatrix );
vec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );
return envMapColor.rgb * envMapIntensity;
#else
return vec3( 0.0 );
#endif
}
#endif";
var lights_toon_fragment = "ToonMaterial material;
material.diffuseColor = diffuseColor.rgb;";
var lights_toon_pars_fragment = "varying vec3 vViewPosition;
struct ToonMaterial {
vec3 diffuseColor;
};
void RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {
vec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_Toon
#define RE_IndirectDiffuse RE_IndirectDiffuse_Toon";
var lights_phong_fragment = "BlinnPhongMaterial material;
material.diffuseColor = diffuseColor.rgb;
material.specularColor = specular;
material.specularShininess = shininess;
material.specularStrength = specularStrength;";
var lights_phong_pars_fragment = "varying vec3 vViewPosition;
struct BlinnPhongMaterial {
vec3 diffuseColor;
vec3 specularColor;
float specularShininess;
float specularStrength;
};
void RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometry.normal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
reflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;
}
void RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_BlinnPhong
#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong";
var lights_physical_fragment = "PhysicalMaterial material;
material.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );
vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );
float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );
material.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;
material.roughness = min( material.roughness, 1.0 );
#ifdef IOR
material.ior = ior;
#ifdef USE_SPECULAR
float specularIntensityFactor = specularIntensity;
vec3 specularColorFactor = specularColor;
#ifdef USE_SPECULAR_COLORMAP
specularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
specularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;
#endif
material.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );
#else
float specularIntensityFactor = 1.0;
vec3 specularColorFactor = vec3( 1.0 );
material.specularF90 = 1.0;
#endif
material.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );
#else
material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );
material.specularF90 = 1.0;
#endif
#ifdef USE_CLEARCOAT
material.clearcoat = clearcoat;
material.clearcoatRoughness = clearcoatRoughness;
material.clearcoatF0 = vec3( 0.04 );
material.clearcoatF90 = 1.0;
#ifdef USE_CLEARCOATMAP
material.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
material.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;
#endif
material.clearcoat = saturate( material.clearcoat ); material.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );
material.clearcoatRoughness += geometryRoughness;
material.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );
#endif
#ifdef USE_IRIDESCENCE
material.iridescence = iridescence;
material.iridescenceIOR = iridescenceIOR;
#ifdef USE_IRIDESCENCEMAP
material.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
material.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;
#else
material.iridescenceThickness = iridescenceThicknessMaximum;
#endif
#endif
#ifdef USE_SHEEN
material.sheenColor = sheenColor;
#ifdef USE_SHEEN_COLORMAP
material.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;
#endif
material.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );
#ifdef USE_SHEEN_ROUGHNESSMAP
material.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;
#endif
#endif";
var lights_physical_pars_fragment = "struct PhysicalMaterial {
vec3 diffuseColor;
float roughness;
vec3 specularColor;
float specularF90;
#ifdef USE_CLEARCOAT
float clearcoat;
float clearcoatRoughness;
vec3 clearcoatF0;
float clearcoatF90;
#endif
#ifdef USE_IRIDESCENCE
float iridescence;
float iridescenceIOR;
float iridescenceThickness;
vec3 iridescenceFresnel;
vec3 iridescenceF0;
#endif
#ifdef USE_SHEEN
vec3 sheenColor;
float sheenRoughness;
#endif
#ifdef IOR
float ior;
#endif
#ifdef USE_TRANSMISSION
float transmission;
float transmissionAlpha;
float thickness;
float attenuationDistance;
vec3 attenuationColor;
#endif
};
vec3 clearcoatSpecular = vec3( 0.0 );
vec3 sheenSpecular = vec3( 0.0 );
vec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {
float x = clamp( 1.0 - dotVH, 0.0, 1.0 );
float x2 = x * x;
float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );
return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );
}
float V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {
float a2 = pow2( alpha );
float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
return 0.5 / max( gv + gl, EPSILON );
}
float D_GGX( const in float alpha, const in float dotNH ) {
float a2 = pow2( alpha );
float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;
return RECIPROCAL_PI * a2 / pow2( denom );
}
#ifdef USE_CLEARCOAT
vec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {
vec3 f0 = material.clearcoatF0;
float f90 = material.clearcoatF90;
float roughness = material.clearcoatRoughness;
float alpha = pow2( roughness );
vec3 halfDir = normalize( lightDir + viewDir );
float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( f0, f90, dotVH );
float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );
float D = D_GGX( alpha, dotNH );
return F * ( V * D );
}
#endif
vec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {
vec3 f0 = material.specularColor;
float f90 = material.specularF90;
float roughness = material.roughness;
float alpha = pow2( roughness );
vec3 halfDir = normalize( lightDir + viewDir );
float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( f0, f90, dotVH );
#ifdef USE_IRIDESCENCE
F = mix( F, material.iridescenceFresnel, material.iridescence );
#endif
float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );
float D = D_GGX( alpha, dotNH );
return F * ( V * D );
}
vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {
const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;
float dotNV = saturate( dot( N, V ) );
vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );
uv = uv * LUT_SCALE + LUT_BIAS;
return uv;
}
float LTC_ClippedSphereFormFactor( const in vec3 f ) {
float l = length( f );
return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );
}
vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {
float x = dot( v1, v2 );
float y = abs( x );
float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;
float b = 3.4175940 + ( 4.1616724 + y ) * y;
float v = a / b;
float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;
return cross( v1, v2 ) * theta_sintheta;
}
vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {
vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];
vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];
vec3 lightNormal = cross( v1, v2 );
if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );
vec3 T1, T2;
T1 = normalize( V - N * dot( V, N ) );
T2 = - cross( N, T1 );
mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );
vec3 coords[ 4 ];
coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );
coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );
coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );
coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );
coords[ 0 ] = normalize( coords[ 0 ] );
coords[ 1 ] = normalize( coords[ 1 ] );
coords[ 2 ] = normalize( coords[ 2 ] );
coords[ 3 ] = normalize( coords[ 3 ] );
vec3 vectorFormFactor = vec3( 0.0 );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );
float result = LTC_ClippedSphereFormFactor( vectorFormFactor );
return vec3( result );
}
#if defined( USE_SHEEN )
float D_Charlie( float roughness, float dotNH ) {
float alpha = pow2( roughness );
float invAlpha = 1.0 / alpha;
float cos2h = dotNH * dotNH;
float sin2h = max( 1.0 - cos2h, 0.0078125 );
return ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );
}
float V_Neubelt( float dotNV, float dotNL ) {
return saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );
}
vec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {
vec3 halfDir = normalize( lightDir + viewDir );
float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float D = D_Charlie( sheenRoughness, dotNH );
float V = V_Neubelt( dotNV, dotNL );
return sheenColor * ( D * V );
}
#endif
float IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {
float dotNV = saturate( dot( normal, viewDir ) );
float r2 = roughness * roughness;
float a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;
float b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;
float DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );
return saturate( DG * RECIPROCAL_PI );
}
vec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {
float dotNV = saturate( dot( normal, viewDir ) );
const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );
const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );
vec4 r = roughness * c0 + c1;
float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;
vec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;
return fab;
}
vec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {
vec2 fab = DFGApprox( normal, viewDir, roughness );
return specularColor * fab.x + specularF90 * fab.y;
}
#ifdef USE_IRIDESCENCE
void computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {
#else
void computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {
#endif
vec2 fab = DFGApprox( normal, viewDir, roughness );
#ifdef USE_IRIDESCENCE
vec3 Fr = mix( specularColor, iridescenceF0, iridescence );
#else
vec3 Fr = specularColor;
#endif
vec3 FssEss = Fr * fab.x + specularF90 * fab.y;
float Ess = fab.x + fab.y;
float Ems = 1.0 - Ess;
vec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619; vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );
singleScatter += FssEss;
multiScatter += Fms * Ems;
}
#if NUM_RECT_AREA_LIGHTS > 0
void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {
vec3 normal = geometry.normal;
vec3 viewDir = geometry.viewDir;
vec3 position = geometry.position;
vec3 lightPos = rectAreaLight.position;
vec3 halfWidth = rectAreaLight.halfWidth;
vec3 halfHeight = rectAreaLight.halfHeight;
vec3 lightColor = rectAreaLight.color;
float roughness = material.roughness;
vec3 rectCoords[ 4 ];
rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; rectCoords[ 1 ] = lightPos - halfWidth - halfHeight;
rectCoords[ 2 ] = lightPos - halfWidth + halfHeight;
rectCoords[ 3 ] = lightPos + halfWidth + halfHeight;
vec2 uv = LTC_Uv( normal, viewDir, roughness );
vec4 t1 = texture2D( ltc_1, uv );
vec4 t2 = texture2D( ltc_2, uv );
mat3 mInv = mat3(
vec3( t1.x, 0, t1.y ),
vec3( 0, 1, 0 ),
vec3( t1.z, 0, t1.w )
);
vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );
reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );
reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );
}
#endif
void RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometry.normal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
#ifdef USE_CLEARCOAT
float dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );
vec3 ccIrradiance = dotNLcc * directLight.color;
clearcoatSpecular += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material );
#endif
#ifdef USE_SHEEN
sheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );
#endif
reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material );
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {
#ifdef USE_CLEARCOAT
clearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );
#endif
#ifdef USE_SHEEN
sheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness );
#endif
vec3 singleScattering = vec3( 0.0 );
vec3 multiScattering = vec3( 0.0 );
vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;
#ifdef USE_IRIDESCENCE
computeMultiscatteringIridescence( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );
#else
computeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );
#endif
vec3 totalScattering = singleScattering + multiScattering;
vec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );
reflectedLight.indirectSpecular += radiance * singleScattering;
reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;
reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;
}
#define RE_Direct RE_Direct_Physical
#define RE_Direct_RectArea RE_Direct_RectArea_Physical
#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical
#define RE_IndirectSpecular RE_IndirectSpecular_Physical
float computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {
return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );
}";
var lights_fragment_begin = "
GeometricContext geometry;
geometry.position = - vViewPosition;
geometry.normal = normal;
geometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );
#ifdef USE_CLEARCOAT
geometry.clearcoatNormal = clearcoatNormal;
#endif
#ifdef USE_IRIDESCENCE
float dotNVi = saturate( dot( normal, geometry.viewDir ) );
if ( material.iridescenceThickness == 0.0 ) {
material.iridescence = 0.0;
} else {
material.iridescence = saturate( material.iridescence );
}
if ( material.iridescence > 0.0 ) {
material.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );
material.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );
}
#endif
IncidentLight directLight;
#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )
PointLight pointLight;
#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0
PointLightShadow pointLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {
pointLight = pointLights[ i ];
getPointLightInfo( pointLight, geometry, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )
pointLightShadow = pointLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;
#endif
RE_Direct( directLight, geometry, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )
SpotLight spotLight;
vec4 spotColor;
vec3 spotLightCoord;
bool inSpotLightMap;
#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0
SpotLightShadow spotLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {
spotLight = spotLights[ i ];
getSpotLightInfo( spotLight, geometry, directLight );
#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )
#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX
#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS
#else
#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )
#endif
#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )
spotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;
inSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );
spotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );
directLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;
#endif
#undef SPOT_LIGHT_MAP_INDEX
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
spotLightShadow = spotLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;
#endif
RE_Direct( directLight, geometry, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )
DirectionalLight directionalLight;
#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0
DirectionalLightShadow directionalLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {
directionalLight = directionalLights[ i ];
getDirectionalLightInfo( directionalLight, geometry, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )
directionalLightShadow = directionalLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;
#endif
RE_Direct( directLight, geometry, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )
RectAreaLight rectAreaLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {
rectAreaLight = rectAreaLights[ i ];
RE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if defined( RE_IndirectDiffuse )
vec3 iblIrradiance = vec3( 0.0 );
vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );
irradiance += getLightProbeIrradiance( lightProbe, geometry.normal );
#if ( NUM_HEMI_LIGHTS > 0 )
#pragma unroll_loop_start
for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {
irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );
}
#pragma unroll_loop_end
#endif
#endif
#if defined( RE_IndirectSpecular )
vec3 radiance = vec3( 0.0 );
vec3 clearcoatRadiance = vec3( 0.0 );
#endif";
var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )
#ifdef USE_LIGHTMAP
vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );
vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;
irradiance += lightMapIrradiance;
#endif
#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )
iblIrradiance += getIBLIrradiance( geometry.normal );
#endif
#endif
#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )
radiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );
#ifdef USE_CLEARCOAT
clearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );
#endif
#endif";
var lights_fragment_end = "#if defined( RE_IndirectDiffuse )
RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );
#endif
#if defined( RE_IndirectSpecular )
RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );
#endif";
var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )
gl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;
#endif";
var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )
uniform float logDepthBufFC;
varying float vFragDepth;
varying float vIsPerspective;
#endif";
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
varying float vFragDepth;
varying float vIsPerspective;
#else
uniform float logDepthBufFC;
#endif
#endif";
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF
#ifdef USE_LOGDEPTHBUF_EXT
vFragDepth = 1.0 + gl_Position.w;
vIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );
#else
if ( isPerspectiveMatrix( projectionMatrix ) ) {
gl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;
gl_Position.z *= gl_Position.w;
}
#endif
#endif";
var map_fragment = "#ifdef USE_MAP
diffuseColor *= texture2D( map, vMapUv );
#endif";
var map_pars_fragment = "#ifdef USE_MAP
uniform sampler2D map;
#endif";
var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )
#if defined( USE_POINTS_UV )
vec2 uv = vUv;
#else
vec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;
#endif
#endif
#ifdef USE_MAP
diffuseColor *= texture2D( map, uv );
#endif
#ifdef USE_ALPHAMAP
diffuseColor.a *= texture2D( alphaMap, uv ).g;
#endif";
var map_particle_pars_fragment = "#if defined( USE_POINTS_UV )
varying vec2 vUv;
#else
#if defined( USE_MAP ) || defined( USE_ALPHAMAP )
uniform mat3 uvTransform;
#endif
#endif
#ifdef USE_MAP
uniform sampler2D map;
#endif
#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif";
var metalnessmap_fragment = "float metalnessFactor = metalness;
#ifdef USE_METALNESSMAP
vec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );
metalnessFactor *= texelMetalness.b;
#endif";
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP
uniform sampler2D metalnessMap;
#endif";
var morphcolor_vertex = "#if defined( USE_MORPHCOLORS ) && defined( MORPHTARGETS_TEXTURE )
vColor *= morphTargetBaseInfluence;
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
#if defined( USE_COLOR_ALPHA )
if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];
#elif defined( USE_COLOR )
if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];
#endif
}
#endif";
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS
objectNormal *= morphTargetBaseInfluence;
#ifdef MORPHTARGETS_TEXTURE
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
if ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];
}
#else
objectNormal += morphNormal0 * morphTargetInfluences[ 0 ];
objectNormal += morphNormal1 * morphTargetInfluences[ 1 ];
objectNormal += morphNormal2 * morphTargetInfluences[ 2 ];
objectNormal += morphNormal3 * morphTargetInfluences[ 3 ];
#endif
#endif";
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS
uniform float morphTargetBaseInfluence;
#ifdef MORPHTARGETS_TEXTURE
uniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];
uniform sampler2DArray morphTargetsTexture;
uniform ivec2 morphTargetsTextureSize;
vec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {
int texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;
int y = texelIndex / morphTargetsTextureSize.x;
int x = texelIndex - y * morphTargetsTextureSize.x;
ivec3 morphUV = ivec3( x, y, morphTargetIndex );
return texelFetch( morphTargetsTexture, morphUV, 0 );
}
#else
#ifndef USE_MORPHNORMALS
uniform float morphTargetInfluences[ 8 ];
#else
uniform float morphTargetInfluences[ 4 ];
#endif
#endif
#endif";
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS
transformed *= morphTargetBaseInfluence;
#ifdef MORPHTARGETS_TEXTURE
for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {
if ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];
}
#else
transformed += morphTarget0 * morphTargetInfluences[ 0 ];
transformed += morphTarget1 * morphTargetInfluences[ 1 ];
transformed += morphTarget2 * morphTargetInfluences[ 2 ];
transformed += morphTarget3 * morphTargetInfluences[ 3 ];
#ifndef USE_MORPHNORMALS
transformed += morphTarget4 * morphTargetInfluences[ 4 ];
transformed += morphTarget5 * morphTargetInfluences[ 5 ];
transformed += morphTarget6 * morphTargetInfluences[ 6 ];
transformed += morphTarget7 * morphTargetInfluences[ 7 ];
#endif
#endif
#endif";
var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;
#ifdef FLAT_SHADED
vec3 fdx = dFdx( vViewPosition );
vec3 fdy = dFdy( vViewPosition );
vec3 normal = normalize( cross( fdx, fdy ) );
#else
vec3 normal = normalize( vNormal );
#ifdef DOUBLE_SIDED
normal *= faceDirection;
#endif
#endif
#ifdef USE_NORMALMAP_TANGENTSPACE
#ifdef USE_TANGENT
mat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );
#else
mat3 tbn = getTangentFrame( - vViewPosition, normal, vNormalMapUv );
#endif
#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )
tbn[0] *= faceDirection;
tbn[1] *= faceDirection;
#endif
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
#ifdef USE_TANGENT
mat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );
#else
mat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );
#endif
#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )
tbn2[0] *= faceDirection;
tbn2[1] *= faceDirection;
#endif
#endif
vec3 geometryNormal = normal;";
var normal_fragment_maps = "#ifdef USE_NORMALMAP_OBJECTSPACE
normal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;
#ifdef FLIP_SIDED
normal = - normal;
#endif
#ifdef DOUBLE_SIDED
normal = normal * faceDirection;
#endif
normal = normalize( normalMatrix * normal );
#elif defined( USE_NORMALMAP_TANGENTSPACE )
vec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;
mapN.xy *= normalScale;
normal = normalize( tbn * mapN );
#elif defined( USE_BUMPMAP )
normal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );
#endif";
var normal_pars_fragment = "#ifndef FLAT_SHADED
varying vec3 vNormal;
#ifdef USE_TANGENT
varying vec3 vTangent;
varying vec3 vBitangent;
#endif
#endif";
var normal_pars_vertex = "#ifndef FLAT_SHADED
varying vec3 vNormal;
#ifdef USE_TANGENT
varying vec3 vTangent;
varying vec3 vBitangent;
#endif
#endif";
var normal_vertex = "#ifndef FLAT_SHADED
vNormal = normalize( transformedNormal );
#ifdef USE_TANGENT
vTangent = normalize( transformedTangent );
vBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );
#endif
#endif";
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP
uniform sampler2D normalMap;
uniform vec2 normalScale;
#endif
#ifdef USE_NORMALMAP_OBJECTSPACE
uniform mat3 normalMatrix;
#endif
#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) )
mat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {
vec3 q0 = dFdx( eye_pos.xyz );
vec3 q1 = dFdy( eye_pos.xyz );
vec2 st0 = dFdx( uv.st );
vec2 st1 = dFdy( uv.st );
vec3 N = surf_norm;
vec3 q1perp = cross( q1, N );
vec3 q0perp = cross( N, q0 );
vec3 T = q1perp * st0.x + q0perp * st1.x;
vec3 B = q1perp * st0.y + q0perp * st1.y;
float det = max( dot( T, T ), dot( B, B ) );
float scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );
return mat3( T * scale, B * scale, N );
}
#endif";
var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT
vec3 clearcoatNormal = geometryNormal;
#endif";
var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP
vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;
clearcoatMapN.xy *= clearcoatNormalScale;
clearcoatNormal = normalize( tbn2 * clearcoatMapN );
#endif";
var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP
uniform sampler2D clearcoatMap;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
uniform sampler2D clearcoatNormalMap;
uniform vec2 clearcoatNormalScale;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
uniform sampler2D clearcoatRoughnessMap;
#endif";
var iridescence_pars_fragment = "#ifdef USE_IRIDESCENCEMAP
uniform sampler2D iridescenceMap;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
uniform sampler2D iridescenceThicknessMap;
#endif";
var output_fragment = "#ifdef OPAQUE
diffuseColor.a = 1.0;
#endif
#ifdef USE_TRANSMISSION
diffuseColor.a *= material.transmissionAlpha + 0.1;
#endif
gl_FragColor = vec4( outgoingLight, diffuseColor.a );";
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {
return normalize( normal ) * 0.5 + 0.5;
}
vec3 unpackRGBToNormal( const in vec3 rgb ) {
return 2.0 * rgb.xyz - 1.0;
}
const float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;
const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );
const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );
const float ShiftRight8 = 1. / 256.;
vec4 packDepthToRGBA( const in float v ) {
vec4 r = vec4( fract( v * PackFactors ), v );
r.yzw -= r.xyz * ShiftRight8; return r * PackUpscale;
}
float unpackRGBAToDepth( const in vec4 v ) {
return dot( v, UnpackFactors );
}
vec2 packDepthToRG( in highp float v ) {
return packDepthToRGBA( v ).yx;
}
float unpackRGToDepth( const in highp vec2 v ) {
return unpackRGBAToDepth( vec4( v.xy, 0.0, 0.0 ) );
}
vec4 pack2HalfToRGBA( vec2 v ) {
vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );
return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );
}
vec2 unpackRGBATo2Half( vec4 v ) {
return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}
float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {
return ( viewZ + near ) / ( near - far );
}
float orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {
return depth * ( near - far ) - near;
}
float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {
return ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );
}
float perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {
return ( near * far ) / ( ( far - near ) * depth - far );
}";
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA
gl_FragColor.rgb *= gl_FragColor.a;
#endif";
var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );
#ifdef USE_INSTANCING
mvPosition = instanceMatrix * mvPosition;
#endif
mvPosition = modelViewMatrix * mvPosition;
gl_Position = projectionMatrix * mvPosition;";
var dithering_fragment = "#ifdef DITHERING
gl_FragColor.rgb = dithering( gl_FragColor.rgb );
#endif";
var dithering_pars_fragment = "#ifdef DITHERING
vec3 dithering( vec3 color ) {
float grid_position = rand( gl_FragCoord.xy );
vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );
dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );
return color + dither_shift_RGB;
}
#endif";
var roughnessmap_fragment = "float roughnessFactor = roughness;
#ifdef USE_ROUGHNESSMAP
vec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );
roughnessFactor *= texelRoughness.g;
#endif";
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP
uniform sampler2D roughnessMap;
#endif";
var shadowmap_pars_fragment = "#if NUM_SPOT_LIGHT_COORDS > 0
varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];
#endif
#if NUM_SPOT_LIGHT_MAPS > 0
uniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];
#endif
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
struct DirectionalLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];
struct SpotLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];
varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];
struct PointLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
float shadowCameraNear;
float shadowCameraFar;
};
uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];
#endif
float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {
return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );
}
vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {
return unpackRGBATo2Half( texture2D( shadow, uv ) );
}
float VSMShadow (sampler2D shadow, vec2 uv, float compare ){
float occlusion = 1.0;
vec2 distribution = texture2DDistribution( shadow, uv );
float hard_shadow = step( compare , distribution.x );
if (hard_shadow != 1.0 ) {
float distance = compare - distribution.x ;
float variance = max( 0.00000, distribution.y * distribution.y );
float softness_probability = variance / (variance + distance * distance ); softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );
}
return occlusion;
}
float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {
float shadow = 1.0;
shadowCoord.xyz /= shadowCoord.w;
shadowCoord.z += shadowBias;
bool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;
bool frustumTest = inFrustum && shadowCoord.z <= 1.0;
if ( frustumTest ) {
#if defined( SHADOWMAP_TYPE_PCF )
vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
float dx0 = - texelSize.x * shadowRadius;
float dy0 = - texelSize.y * shadowRadius;
float dx1 = + texelSize.x * shadowRadius;
float dy1 = + texelSize.y * shadowRadius;
float dx2 = dx0 / 2.0;
float dy2 = dy0 / 2.0;
float dx3 = dx1 / 2.0;
float dy3 = dy1 / 2.0;
shadow = (
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )
) * ( 1.0 / 17.0 );
#elif defined( SHADOWMAP_TYPE_PCF_SOFT )
vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
float dx = texelSize.x;
float dy = texelSize.y;
vec2 uv = shadowCoord.xy;
vec2 f = fract( uv * shadowMapSize + 0.5 );
uv -= f * texelSize;
shadow = (
texture2DCompare( shadowMap, uv, shadowCoord.z ) +
texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +
texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +
mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),
f.x ) +
mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),
f.x ) +
mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),
f.y ) +
mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),
f.y ) +
mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),
f.x ),
mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),
f.x ),
f.y )
) * ( 1.0 / 9.0 );
#elif defined( SHADOWMAP_TYPE_VSM )
shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );
#else
shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );
#endif
}
return shadow;
}
vec2 cubeToUV( vec3 v, float texelSizeY ) {
vec3 absV = abs( v );
float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );
absV *= scaleToCube;
v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );
vec2 planar = v.xy;
float almostATexel = 1.5 * texelSizeY;
float almostOne = 1.0 - almostATexel;
if ( absV.z >= almostOne ) {
if ( v.z > 0.0 )
planar.x = 4.0 - v.x;
} else if ( absV.x >= almostOne ) {
float signX = sign( v.x );
planar.x = v.z * signX + 2.0 * signX;
} else if ( absV.y >= almostOne ) {
float signY = sign( v.y );
planar.x = v.x + 2.0 * signY + 2.0;
planar.y = v.z * signY - 2.0;
}
return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );
}
float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {
vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );
vec3 lightToPosition = shadowCoord.xyz;
float dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); dp += shadowBias;
vec3 bd3D = normalize( lightToPosition );
#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )
vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;
return (
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )
) * ( 1.0 / 9.0 );
#else
return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );
#endif
}
#endif";
var shadowmap_pars_vertex = "#if NUM_SPOT_LIGHT_COORDS > 0
uniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];
varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];
#endif
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
struct DirectionalLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
struct SpotLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];
varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];
struct PointLightShadow {
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
float shadowCameraNear;
float shadowCameraFar;
};
uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];
#endif
#endif";
var shadowmap_vertex = "#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )
vec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );
vec4 shadowWorldPosition;
#endif
#if defined( USE_SHADOWMAP )
#if NUM_DIR_LIGHT_SHADOWS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {
shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );
vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;
}
#pragma unroll_loop_end
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {
shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );
vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;
}
#pragma unroll_loop_end
#endif
#endif
#if NUM_SPOT_LIGHT_COORDS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {
shadowWorldPosition = worldPosition;
#if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
shadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;
#endif
vSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;
}
#pragma unroll_loop_end
#endif";
var shadowmask_pars_fragment = "float getShadowMask() {
float shadow = 1.0;
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
DirectionalLightShadow directionalLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {
directionalLight = directionalLightShadows[ i ];
shadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;
}
#pragma unroll_loop_end
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
SpotLightShadow spotLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {
spotLight = spotLightShadows[ i ];
shadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;
}
#pragma unroll_loop_end
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
PointLightShadow pointLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {
pointLight = pointLightShadows[ i ];
shadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;
}
#pragma unroll_loop_end
#endif
#endif
return shadow;
}";
var skinbase_vertex = "#ifdef USE_SKINNING
mat4 boneMatX = getBoneMatrix( skinIndex.x );
mat4 boneMatY = getBoneMatrix( skinIndex.y );
mat4 boneMatZ = getBoneMatrix( skinIndex.z );
mat4 boneMatW = getBoneMatrix( skinIndex.w );
#endif";
var skinning_pars_vertex = "#ifdef USE_SKINNING
uniform mat4 bindMatrix;
uniform mat4 bindMatrixInverse;
uniform highp sampler2D boneTexture;
uniform int boneTextureSize;
mat4 getBoneMatrix( const in float i ) {
float j = i * 4.0;
float x = mod( j, float( boneTextureSize ) );
float y = floor( j / float( boneTextureSize ) );
float dx = 1.0 / float( boneTextureSize );
float dy = 1.0 / float( boneTextureSize );
y = dy * ( y + 0.5 );
vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );
vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );
vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );
vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );
mat4 bone = mat4( v1, v2, v3, v4 );
return bone;
}
#endif";
var skinning_vertex = "#ifdef USE_SKINNING
vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );
vec4 skinned = vec4( 0.0 );
skinned += boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned += boneMatZ * skinVertex * skinWeight.z;
skinned += boneMatW * skinVertex * skinWeight.w;
transformed = ( bindMatrixInverse * skinned ).xyz;
#endif";
var skinnormal_vertex = "#ifdef USE_SKINNING
mat4 skinMatrix = mat4( 0.0 );
skinMatrix += skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
skinMatrix += skinWeight.z * boneMatZ;
skinMatrix += skinWeight.w * boneMatW;
skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;
objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;
#ifdef USE_TANGENT
objectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;
#endif
#endif";
var specularmap_fragment = "float specularStrength;
#ifdef USE_SPECULARMAP
vec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );
specularStrength = texelSpecular.r;
#else
specularStrength = 1.0;
#endif";
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP
uniform sampler2D specularMap;
#endif";
var tonemapping_fragment = "#if defined( TONE_MAPPING )
gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );
#endif";
var tonemapping_pars_fragment = "#ifndef saturate
#define saturate( a ) clamp( a, 0.0, 1.0 )
#endif
uniform float toneMappingExposure;
vec3 LinearToneMapping( vec3 color ) {
return toneMappingExposure * color;
}
vec3 ReinhardToneMapping( vec3 color ) {
color *= toneMappingExposure;
return saturate( color / ( vec3( 1.0 ) + color ) );
}
vec3 OptimizedCineonToneMapping( vec3 color ) {
color *= toneMappingExposure;
color = max( vec3( 0.0 ), color - 0.004 );
return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );
}
vec3 RRTAndODTFit( vec3 v ) {
vec3 a = v * ( v + 0.0245786 ) - 0.000090537;
vec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;
return a / b;
}
vec3 ACESFilmicToneMapping( vec3 color ) {
const mat3 ACESInputMat = mat3(
vec3( 0.59719, 0.07600, 0.02840 ), vec3( 0.35458, 0.90834, 0.13383 ),
vec3( 0.04823, 0.01566, 0.83777 )
);
const mat3 ACESOutputMat = mat3(
vec3( 1.60475, -0.10208, -0.00327 ), vec3( -0.53108, 1.10813, -0.07276 ),
vec3( -0.07367, -0.00605, 1.07602 )
);
color *= toneMappingExposure / 0.6;
color = ACESInputMat * color;
color = RRTAndODTFit( color );
color = ACESOutputMat * color;
return saturate( color );
}
vec3 CustomToneMapping( vec3 color ) { return color; }";
var transmission_fragment = "#ifdef USE_TRANSMISSION
material.transmission = transmission;
material.transmissionAlpha = 1.0;
material.thickness = thickness;
material.attenuationDistance = attenuationDistance;
material.attenuationColor = attenuationColor;
#ifdef USE_TRANSMISSIONMAP
material.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;
#endif
#ifdef USE_THICKNESSMAP
material.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;
#endif
vec3 pos = vWorldPosition;
vec3 v = normalize( cameraPosition - pos );
vec3 n = inverseTransformDirection( normal, viewMatrix );
vec4 transmission = getIBLVolumeRefraction(
n, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,
pos, modelMatrix, viewMatrix, projectionMatrix, material.ior, material.thickness,
material.attenuationColor, material.attenuationDistance );
material.transmissionAlpha = mix( material.transmissionAlpha, transmission.a, material.transmission );
totalDiffuse = mix( totalDiffuse, transmission.rgb, material.transmission );
#endif";
var transmission_pars_fragment = "#ifdef USE_TRANSMISSION
uniform float transmission;
uniform float thickness;
uniform float attenuationDistance;
uniform vec3 attenuationColor;
#ifdef USE_TRANSMISSIONMAP
uniform sampler2D transmissionMap;
#endif
#ifdef USE_THICKNESSMAP
uniform sampler2D thicknessMap;
#endif
uniform vec2 transmissionSamplerSize;
uniform sampler2D transmissionSamplerMap;
uniform mat4 modelMatrix;
uniform mat4 projectionMatrix;
varying vec3 vWorldPosition;
float w0( float a ) {
return ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );
}
float w1( float a ) {
return ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );
}
float w2( float a ){
return ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );
}
float w3( float a ) {
return ( 1.0 / 6.0 ) * ( a * a * a );
}
float g0( float a ) {
return w0( a ) + w1( a );
}
float g1( float a ) {
return w2( a ) + w3( a );
}
float h0( float a ) {
return - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );
}
float h1( float a ) {
return 1.0 + w3( a ) / ( w2( a ) + w3( a ) );
}
vec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {
uv = uv * texelSize.zw + 0.5;
vec2 iuv = floor( uv );
vec2 fuv = fract( uv );
float g0x = g0( fuv.x );
float g1x = g1( fuv.x );
float h0x = h0( fuv.x );
float h1x = h1( fuv.x );
float h0y = h0( fuv.y );
float h1y = h1( fuv.y );
vec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
vec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
vec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
vec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
return g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +
g1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );
}
vec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {
vec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );
vec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );
vec2 fLodSizeInv = 1.0 / fLodSize;
vec2 cLodSizeInv = 1.0 / cLodSize;
vec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );
vec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );
return mix( fSample, cSample, fract( lod ) );
}
vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {
vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );
vec3 modelScale;
modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );
modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );
modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );
return normalize( refractionVector ) * thickness * modelScale;
}
float applyIorToRoughness( const in float roughness, const in float ior ) {
return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );
}
vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {
float lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );
return textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );
}
vec3 applyVolumeAttenuation( const in vec3 radiance, const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {
if ( isinf( attenuationDistance ) ) {
return radiance;
} else {
vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;
vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); return transmittance * radiance;
}
}
vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,
const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,
const in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness,
const in vec3 attenuationColor, const in float attenuationDistance ) {
vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
vec3 refractedRayExit = position + transmissionRay;
vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
vec2 refractionCoords = ndcPos.xy / ndcPos.w;
refractionCoords += 1.0;
refractionCoords /= 2.0;
vec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
vec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );
vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );
return vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );
}
#endif";
var uv_pars_fragment = "#ifdef USE_UV
varying vec2 vUv;
#endif
#ifdef USE_MAP
varying vec2 vMapUv;
#endif
#ifdef USE_ALPHAMAP
varying vec2 vAlphaMapUv;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vLightMapUv;
#endif
#ifdef USE_AOMAP
varying vec2 vAoMapUv;
#endif
#ifdef USE_BUMPMAP
varying vec2 vBumpMapUv;
#endif
#ifdef USE_NORMALMAP
varying vec2 vNormalMapUv;
#endif
#ifdef USE_EMISSIVEMAP
varying vec2 vEmissiveMapUv;
#endif
#ifdef USE_METALNESSMAP
varying vec2 vMetalnessMapUv;
#endif
#ifdef USE_ROUGHNESSMAP
varying vec2 vRoughnessMapUv;
#endif
#ifdef USE_CLEARCOATMAP
varying vec2 vClearcoatMapUv;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
varying vec2 vClearcoatNormalMapUv;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
varying vec2 vClearcoatRoughnessMapUv;
#endif
#ifdef USE_IRIDESCENCEMAP
varying vec2 vIridescenceMapUv;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
varying vec2 vIridescenceThicknessMapUv;
#endif
#ifdef USE_SHEEN_COLORMAP
varying vec2 vSheenColorMapUv;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
varying vec2 vSheenRoughnessMapUv;
#endif
#ifdef USE_SPECULARMAP
varying vec2 vSpecularMapUv;
#endif
#ifdef USE_SPECULAR_COLORMAP
varying vec2 vSpecularColorMapUv;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
varying vec2 vSpecularIntensityMapUv;
#endif
#ifdef USE_TRANSMISSIONMAP
uniform mat3 transmissionMapTransform;
varying vec2 vTransmissionMapUv;
#endif
#ifdef USE_THICKNESSMAP
uniform mat3 thicknessMapTransform;
varying vec2 vThicknessMapUv;
#endif";
var uv_pars_vertex = "#ifdef USE_UV
varying vec2 vUv;
#endif
#ifdef USE_MAP
uniform mat3 mapTransform;
varying vec2 vMapUv;
#endif
#ifdef USE_ALPHAMAP
uniform mat3 alphaMapTransform;
varying vec2 vAlphaMapUv;
#endif
#ifdef USE_LIGHTMAP
uniform mat3 lightMapTransform;
varying vec2 vLightMapUv;
#endif
#ifdef USE_AOMAP
uniform mat3 aoMapTransform;
varying vec2 vAoMapUv;
#endif
#ifdef USE_BUMPMAP
uniform mat3 bumpMapTransform;
varying vec2 vBumpMapUv;
#endif
#ifdef USE_NORMALMAP
uniform mat3 normalMapTransform;
varying vec2 vNormalMapUv;
#endif
#ifdef USE_DISPLACEMENTMAP
uniform mat3 displacementMapTransform;
varying vec2 vDisplacementMapUv;
#endif
#ifdef USE_EMISSIVEMAP
uniform mat3 emissiveMapTransform;
varying vec2 vEmissiveMapUv;
#endif
#ifdef USE_METALNESSMAP
uniform mat3 metalnessMapTransform;
varying vec2 vMetalnessMapUv;
#endif
#ifdef USE_ROUGHNESSMAP
uniform mat3 roughnessMapTransform;
varying vec2 vRoughnessMapUv;
#endif
#ifdef USE_CLEARCOATMAP
uniform mat3 clearcoatMapTransform;
varying vec2 vClearcoatMapUv;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
uniform mat3 clearcoatNormalMapTransform;
varying vec2 vClearcoatNormalMapUv;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
uniform mat3 clearcoatRoughnessMapTransform;
varying vec2 vClearcoatRoughnessMapUv;
#endif
#ifdef USE_SHEEN_COLORMAP
uniform mat3 sheenColorMapTransform;
varying vec2 vSheenColorMapUv;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
uniform mat3 sheenRoughnessMapTransform;
varying vec2 vSheenRoughnessMapUv;
#endif
#ifdef USE_IRIDESCENCEMAP
uniform mat3 iridescenceMapTransform;
varying vec2 vIridescenceMapUv;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
uniform mat3 iridescenceThicknessMapTransform;
varying vec2 vIridescenceThicknessMapUv;
#endif
#ifdef USE_SPECULARMAP
uniform mat3 specularMapTransform;
varying vec2 vSpecularMapUv;
#endif
#ifdef USE_SPECULAR_COLORMAP
uniform mat3 specularColorMapTransform;
varying vec2 vSpecularColorMapUv;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
uniform mat3 specularIntensityMapTransform;
varying vec2 vSpecularIntensityMapUv;
#endif
#ifdef USE_TRANSMISSIONMAP
uniform mat3 transmissionMapTransform;
varying vec2 vTransmissionMapUv;
#endif
#ifdef USE_THICKNESSMAP
uniform mat3 thicknessMapTransform;
varying vec2 vThicknessMapUv;
#endif";
var uv_vertex = "#ifdef USE_UV
vUv = vec3( uv, 1 ).xy;
#endif
#ifdef USE_MAP
vMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;
#endif
#ifdef USE_ALPHAMAP
vAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_LIGHTMAP
vLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_AOMAP
vAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_BUMPMAP
vBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_NORMALMAP
vNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_DISPLACEMENTMAP
vDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_EMISSIVEMAP
vEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_METALNESSMAP
vMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_ROUGHNESSMAP
vRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_CLEARCOATMAP
vClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
vClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
vClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_IRIDESCENCEMAP
vIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
vIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SHEEN_COLORMAP
vSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
vSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SPECULARMAP
vSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SPECULAR_COLORMAP
vSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
vSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_TRANSMISSIONMAP
vTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;
#endif
#ifdef USE_THICKNESSMAP
vThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;
#endif";
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0
vec4 worldPosition = vec4( transformed, 1.0 );
#ifdef USE_INSTANCING
worldPosition = instanceMatrix * worldPosition;
#endif
worldPosition = modelMatrix * worldPosition;
#endif";
const vertex$h = "varying vec2 vUv;
uniform mat3 uvTransform;
void main() {
vUv = ( uvTransform * vec3( uv, 1 ) ).xy;
gl_Position = vec4( position.xy, 1.0, 1.0 );
}";
const fragment$h = "uniform sampler2D t2D;
uniform float backgroundIntensity;
varying vec2 vUv;
void main() {
vec4 texColor = texture2D( t2D, vUv );
texColor.rgb *= backgroundIntensity;
gl_FragColor = texColor;
#include
#include
}";
const vertex$g = "varying vec3 vWorldDirection;
#include
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include
#include
gl_Position.z = gl_Position.w;
}";
const fragment$g = "#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#elif defined( ENVMAP_TYPE_CUBE_UV )
uniform sampler2D envMap;
#endif
uniform float flipEnvMap;
uniform float backgroundBlurriness;
uniform float backgroundIntensity;
varying vec3 vWorldDirection;
#include
void main() {
#ifdef ENVMAP_TYPE_CUBE
vec4 texColor = textureCube( envMap, vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );
#elif defined( ENVMAP_TYPE_CUBE_UV )
vec4 texColor = textureCubeUV( envMap, vWorldDirection, backgroundBlurriness );
#else
vec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );
#endif
texColor.rgb *= backgroundIntensity;
gl_FragColor = texColor;
#include
#include
}";
const vertex$f = "varying vec3 vWorldDirection;
#include
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include
#include
gl_Position.z = gl_Position.w;
}";
const fragment$f = "uniform samplerCube tCube;
uniform float tFlip;
uniform float opacity;
varying vec3 vWorldDirection;
void main() {
vec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );
gl_FragColor = texColor;
gl_FragColor.a *= opacity;
#include
#include
}";
const vertex$e = "#include
#include
#include
#include
#include
#include
#include
varying vec2 vHighPrecisionZW;
void main() {
#include
#include
#ifdef USE_DISPLACEMENTMAP
#include
#include
#include
#endif
#include
#include
#include
#include
#include
#include
#include
vHighPrecisionZW = gl_Position.zw;
}";
const fragment$e = "#if DEPTH_PACKING == 3200
uniform float opacity;
#endif
#include
#include
#include
#include
#include
#include
#include
#include
varying vec2 vHighPrecisionZW;
void main() {
#include
vec4 diffuseColor = vec4( 1.0 );
#if DEPTH_PACKING == 3200
diffuseColor.a = opacity;
#endif
#include
#include
#include
#include
float fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;
#if DEPTH_PACKING == 3200
gl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );
#elif DEPTH_PACKING == 3201
gl_FragColor = packDepthToRGBA( fragCoordZ );
#endif
}";
const vertex$d = "#define DISTANCE
varying vec3 vWorldPosition;
#include
#include
#include
#include
#include
#include
void main() {
#include
#include
#ifdef USE_DISPLACEMENTMAP
#include
#include
#include
#endif
#include
#include
#include
#include
#include
#include
#include
vWorldPosition = worldPosition.xyz;
}";
const fragment$d = "#define DISTANCE
uniform vec3 referencePosition;
uniform float nearDistance;
uniform float farDistance;
varying vec3 vWorldPosition;
#include
#include
#include
#include
#include
#include
#include
void main () {
#include
vec4 diffuseColor = vec4( 1.0 );
#include
#include
#include
float dist = length( vWorldPosition - referencePosition );
dist = ( dist - nearDistance ) / ( farDistance - nearDistance );
dist = saturate( dist );
gl_FragColor = packDepthToRGBA( dist );
}";
const vertex$c = "varying vec3 vWorldDirection;
#include
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include
#include
}";
const fragment$c = "uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
#include
#include
}";
const vertex$b = "uniform float scale;
attribute float lineDistance;
varying float vLineDistance;
#include
#include
#include
#include
#include
#include
#include
void main() {
vLineDistance = scale * lineDistance;
#include
#include
#include
#include
#include
#include
#include
#include
#include
}";
const fragment$b = "uniform vec3 diffuse;
uniform float opacity;
uniform float dashSize;
uniform float totalSize;
varying float vLineDistance;
#include
#include
#include
#include
#include
#include
#include
void main() {
#include
if ( mod( vLineDistance, totalSize ) > dashSize ) {
discard;
}
vec3 outgoingLight = vec3( 0.0 );
vec4 diffuseColor = vec4( diffuse, opacity );
#include
#include
#include
outgoingLight = diffuseColor.rgb;
#include
#include
#include
#include
#include
}";
const vertex$a = "#include
#include
#include
#include
#include
#include
#include
#include
#include
void main() {
#include
#include
#include
#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )
#include
#include
#include
#include
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
}";
const fragment$a = "uniform vec3 diffuse;
uniform float opacity;
#ifndef FLAT_SHADED
varying vec3 vNormal;
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
void main() {
#include
vec4 diffuseColor = vec4( diffuse, opacity );
#include
#include
#include
#include
#include
#include
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
#ifdef USE_LIGHTMAP
vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );
reflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;
#else
reflectedLight.indirectDiffuse += vec3( 1.0 );
#endif
#include
reflectedLight.indirectDiffuse *= diffuseColor.rgb;
vec3 outgoingLight = reflectedLight.indirectDiffuse;
#include
#include
#include
#include
#include
#include
#include
}";
const vertex$9 = "#define LAMBERT
varying vec3 vViewPosition;
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
void main() {
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
vViewPosition = - mvPosition.xyz;
#include
#include
#include
#include
}";
const fragment$9 = "#define LAMBERT
uniform vec3 diffuse;
uniform vec3 emissive;
uniform float opacity;
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
void main() {
#include
vec4 diffuseColor = vec4( diffuse, opacity );
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include
#include
#include
#include
#include
#include
#include
#include
PubXPerf.react",["LoadingMarkerArea.react","PubXComponentPerformance","immutable","react"],(function(a,b,c,d,e,f,g){"use strict";var h,i=h||d("react");a=function(a){babelHelpers.inheritsLoose(b,a);function b(){return a.apply(this,arguments)||this}var e=b.prototype;e.componentWillUnmount=function(){this.$1&&d("PubXComponentPerformance").componentLoadCancel(this,this.props.name)};e.render=function(){var a=Array.isArray(this.props.state)?this.props.state.every(j):j(this.props.state);a?this.$1&&(this.$1=!1,this.$2=!0,d("PubXComponentPerformance").componentLoaded(this,this.props.name)):!this.$2&&!this.$1&&(this.$1=!0,d("PubXComponentPerformance").componentLoading(this,this.props.name));return i.jsx(c("LoadingMarkerArea.react"),{name:this.props.name,owner:"publisher_experience",children:this.props.children})};return b}(i.Component);var j=function a(b){if(b===null)return!0;if(k(b)){var d=b;return!d.isDone()?!1:d.hasValue()?a(d.getValueEnforcing()):!0}if(Array.isArray(b)){if(b.length===0)return!0;d=b;return k(b[0])?d.every(function(a){return a.isDone()}):d.every(a)}if(c("immutable").Iterable.isIterable(b)){d=b.valueSeq();var e=d.first();return k(e)?d.every(function(a){return a.isDone()}):d.every(a)}return Object.values(b).every(function(a){return k(a)?a.isDone():!0})},k=function(a){return a!=null&&a.internalHasValue!=null};b=d("PubXComponentPerformance").createComponent(a);g["default"]=b}),98);
-----
CubitorThreeXR",["CubitorSkyDomeMaterial","CubitorUtils","CubitorXRConstants","CubitorXRGizmoManager","CubitorXRGrabAction","CubitorXRManager","CubitorXRMeshHighLighter","CubitorXRSlideLocomotion","GLTFLoader.three.r137","OrbitControls.three.r137","VRButton.three.r137","asyncToGeneratorRuntime","three-obj-loader","three.r137"],(function(a,b,c,d,e,f,g){"use strict";function h(a){return a*.0174533}a=function(){function a(a){this.$7=new(c("three.r137").Group)(),this.$13=new(c("three.r137").Raycaster)(),this.$1=a.mapCenter,this.$5=a.canvasId,this.$6=a.meshes,this.$2=a.viewport,this.$4=new Map(),this.$19=a.showTerrain}var e=a.prototype;e.setPositioning=function(a,b){var e=this.$2.project([b.getLocation()[0],b.getLocation()[1],this.$2.zoom]),f=b.getScale();a.position.set(e[0]-d("CubitorXRConstants").WIDTH/2,b.getElevation(),e[1]-d("CubitorXRConstants").HEIGHT/2);a.scale.set(f,f,f);f=new((e=c("three.r137")).Quaternion)();a.setRotationFromQuaternion(f);a.rotateOnWorldAxis(new e.Vector3(1,0,0),h(b.getPitch()-90));a.rotateOnWorldAxis(new e.Vector3(0,1,0),h(b.getYaw()));a.rotateOnWorldAxis(new e.Vector3(0,0,1),h(360-b.getRoll()))};e.loadGlb=function(a){var b=this,d=new(c("GLTFLoader.three.r137"))();d.load(a.getGlbUrl(),function(c){b.$8.add(c.scene),b.setPositioning(c.scene,a)})};e.applyTextureToObj=function(a,b){if(a.getTextureUrl()&&a.getTextureUrl().length>0){var d=new(c("three.r137").TextureLoader)().load(a.getTextureUrl());b.traverse(function(a){a instanceof c("three.r137").Mesh&&(a.material.map=d)})}else{var e=new(c("three.r137").MeshPhongMaterial)({color:a.getColor(),side:c("three.r137").DoubleSide,shading:c("three.r137").SmoothShading,shininess:30});b.traverse(function(a){a instanceof c("three.r137").Mesh&&(a.material=e)})}};e.setTextureAndPosition=function(a,b){this.applyTextureToObj(a,b),this.$8.add(b),this.setPositioning(b,a)};e.loadObj=function(a){var b=this,d=new(c("three.r137").OBJLoader)(),e;a.getObjUrl()===""?(e=d.parse(a.getData()),this.setTextureAndPosition(a,e)):d.load(a.getObjUrl(),function(c){b.setTextureAndPosition(a,c)})};e.createSkyBox=function(){var a=c("CubitorSkyDomeMaterial")();a.props.diskLongitude=d("CubitorXRConstants").SUN_LON;a.props.diskLatitude=d("CubitorXRConstants").SUN_LAT;a.props.update();a=new(c("three.r137").Mesh)(new(c("three.r137").SphereGeometry)(1e3,32,16),a);a.name="skyBox";this.$8.add(a)};e.addLighting=function(){var a=new(c("three.r137").AmbientLight)(d("CubitorXRConstants").SOFT_LIGHT,2);this.$8.add(a);a=d("CubitorUtils").vec3_fromPolar(d("CubitorXRConstants").SUN_LON,d("CubitorXRConstants").SUN_LAT);var b=new(c("three.r137").DirectionalLight)(16777215,1);b.position.fromArray(a);b.castShadow=!0;this.$8.add(b)};e.init=function(){var a=this,b,e=document.getElementById(this.$5);c("three-obj-loader")(b=c("three.r137"));this.$8=new b.Scene();this.$6.forEach(function(b){return b.getGlbUrl().length>0?a.loadGlb(b):a.loadObj(b)});this.$8.add(this.$7);this.createSkyBox();this.addLighting();this.$3=new b.PerspectiveCamera(45,window.innerWidth/window.innerHeight,.1,2e3);this.$12=new b.Clock();this.$9=new b.Group();this.$9.position.set(0,0,0);this.$9.add(this.$3);this.$8.add(this.$9);this.$3.position.x=d("CubitorXRConstants").CAMERA_POSITION[0];this.$3.position.y=d("CubitorXRConstants").CAMERA_POSITION[1];this.$3.position.z=d("CubitorXRConstants").CAMERA_POSITION[2];this.$11=new b.WebGLRenderer({canvas:e,context:e.getContext("webgl2"),antialias:!0,alpha:!0});this.$10=new(d("OrbitControls.three.r137").OrbitControls)(this.$3,this.$11.domElement);this.$11.setPixelRatio(window.devicePixelRatio);this.$11.xr.enabled=!0;this.$11.xr.setFramebufferScaleFactor(2);this.$11.xr.setReferenceSpaceType("local");(b=document.body)==null?void 0:b.appendChild(c("VRButton.three.r137").createButton(this.$11));window.addEventListener("resize",function(b){return a.onResize()});this.onResize();this.$14=new(d("CubitorXRManager").XRManager)(this.$11,this.$8,this.$3);this.$14.setRoomContainer(this.$9);this.$14.onXRStart=function(){a.$9.position.y=2};this.$15=new(c("CubitorXRSlideLocomotion"))();this.$15.setTargetObject(this.$9);this.$16=new(c("CubitorXRMeshHighLighter"))();this.$16.startMouseHandling(this.$11,this.$3,this.$7.children);this.$17=new(c("CubitorXRGizmoManager"))(this.$8,this.$11,this.$3,this.$10);this.$11.domElement.addEventListener("pointerdown",function(b){a.checkIfSelectingObject(a.getPointerRayCaster(b))})};e.animate=function(){var a=this;this.$12.start();this.$11.setAnimationLoop(function(b,e){if(a.$14.update(e)){b=a.$14.getController("right");e=a.$7.children;var f=a.$12.getDelta();a.$15.update(f,a.$14);if(a.$19){var g=a.$9.position.x,h=a.$9.position.z;g=a.$18.getHeightAt(g,h)+d("CubitorXRConstants").XR_MIN_HEIGHT;a.$15.updateUp(f,g)}a.$14.updatesFromCamera();a.$17.isInUse()||a.$16.update(a.$14,e);if(b){h=b.getRayCaster();f=b.isButtonUpThisFrame("trigger");g=b.isButtonDownThisFrame("trigger");c("CubitorXRGrabAction").update(b,e);a.$17.isVisible()&&(a.$17.isInUse()?a.$17.casterMove(h):a.$17.casterHover(h));if(g){b=!1;a.$17.isVisible()&&(b=a.$17.casterDown(h));b||a.checkIfSelectingObject(h)}else f&&(a.$17.isInUse()&&a.$17.casterUp())}}a.$11.render(a.$8,a.$3)})};e.getScene=function(){return this.$8};e.getSelectedableGroup=function(){return this.$7};e.isIterable=function(a){return a==null?!1:typeof a[typeof Symbol==="function"?Symbol.iterator:"@@iterator"]==="function"};e.getPointerRayCaster=function(a,b){var d=this.$11.domElement.getBoundingClientRect(),e=a.clientX-d.left;a=a.clientY-d.top;e=new(c("three.r137").Vector2)(e/d.width*2-1,-(a/d.height)*2+1);a=b||this.$13;a.setFromCamera(e,this.$3);return a};e.checkIfSelectingObject=function(a){a=a.intersectObjects(this.$7.children,!0);if(a.length>0){this.$17.attach(a[0].object);return a[0].object}else this.$17.isVisible()&&!this.$17.isInUse()&&this.$17.detach();return null};e.onResize=function(){var a=this.$11.domElement.parentNode;a=a.getBoundingClientRect();this.$11.setSize(a.width,a.height);this.$3.aspect=a.width/a.height;this.$3.updateProjectionMatrix()};e.setTileManager=function(a){this.$18=a};e.updatePositionsFromHeightMap=function(){var a=b("asyncToGeneratorRuntime").asyncToGenerator(function*(){var a=d("CubitorXRConstants").TERRAIN_TO_CAMERA_MIN_HEIGHT+this.$18.getHeightAt(0,0);this.$10.target.y+=a;this.$3.position.y+=a;var b=this.$8.getObjectByName("skyBox");b&&(b.position.y+=a)});function c(){return a.apply(this,arguments)}return c}();return a}();g["default"]=a}),98);
-----
loaders-gl-core-1.3.5",["babel-runtime-7.4.3"],(function(a,b,c,d,e,f){"use strict";function c(a){return a&&typeof a==="object"&&"default"in a?a["default"]:a}var g=c(b("babel-runtime-7.4.3")),h={},i={exports:h};function j(){Object.defineProperty(h,"__esModule",{value:!0});h["default"]=a;function a(a,b){if(!a)throw new Error(b||"loader assertion failed.")}}var k=!1;function l(){k||(k=!0,j());return i.exports}var m={},n={exports:m};function o(){var a=g("/helpers/interopRequireDefault");Object.defineProperty(m,"__esModule",{value:!0});m.isLoaderObject=f;m.normalizeLoader=h;var b=a(g("/helpers/defineProperty")),c=a(l());function d(a,b){var c=Object.keys(a);if(Object.getOwnPropertySymbols){var d=Object.getOwnPropertySymbols(a);b&&(d=d.filter(function(b){return Object.getOwnPropertyDescriptor(a,b).enumerable}));c.push.apply(c,d)}return c}function e(a){for(var c=1;c
-----
mapillary",[],(function $module_mapillary(global,require,requireDynamic,requireLazy,module,exports){ (function (global, factory) { typeof exports === "object" && typeof module !== "undefined" ? factory(exports) : typeof define === "function" && define.amd ? define(["exports"], factory) : (global = typeof globalThis !== "undefined" ? globalThis : global || self, factory(global.mapillary = {})); })(this, (function (exports) { "use strict"; /*! ***************************************************************************** Copyright (c) Microsoft Corporation. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ***************************************************************************** */ /* global Reflect, Promise */ var extendStatics = function(d, b) { extendStatics = Object.setPrototypeOf || ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) || function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; }; return extendStatics(d, b); }; function __extends(d, b) { if (typeof b !== "function" && b !== null) throw new TypeError("Class extends value " + String(b) + " is not a constructor or null"); extendStatics(d, b); function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); } function __awaiter(thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); } function __generator(thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } } function __values(o) { var s = typeof Symbol === "function" && Symbol.iterator, m = s && o[s], i = 0; if (m) return m.call(o); if (o && typeof o.length === "number") return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; throw new TypeError(s ? "Object is not iterable." : "Symbol.iterator is not defined."); } function __read(o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; } function __spreadArray(to, from, pack) { if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) { if (ar || !(i in from)) { if (!ar) ar = Array.prototype.slice.call(from, 0, i); ar[i] = from[i]; } } return to.concat(ar || Array.prototype.slice.call(from)); } function __await(v) { return this instanceof __await ? (this.v = v, this) : new __await(v); } function __asyncGenerator(thisArg, _arguments, generator) { if (!Symbol.asyncIterator) throw new TypeError("Symbol.asyncIterator is not defined."); var g = generator.apply(thisArg, _arguments || []), i, q = []; return i = {}, verb("next"), verb("throw"), verb("return"), i[Symbol.asyncIterator] = function () { return this; }, i; function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; } function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } } function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); } function fulfill(value) { resume("next", value); } function reject(value) { resume("throw", value); } function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); } } function __asyncValues(o) { if (!Symbol.asyncIterator) throw new TypeError("Symbol.asyncIterator is not defined."); var m = o[Symbol.asyncIterator], i; return m ? m.call(o) : (o = typeof __values === "function" ? __values(o) : o[Symbol.iterator](), i = {}, verb("next"), verb("throw"), verb("return"), i[Symbol.asyncIterator] = function () { return this; }, i); function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; } function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); } } function isFunction(value) { return typeof value === "function"; } function createErrorClass(createImpl) { var _super = function (instance) { Error.call(instance); instance.stack = new Error().stack; }; var ctorFunc = createImpl(_super); ctorFunc.prototype = Object.create(Error.prototype); ctorFunc.prototype.constructor = ctorFunc; return ctorFunc; } var UnsubscriptionError = createErrorClass(function (_super) { return function UnsubscriptionErrorImpl(errors) { _super(this); this.message = errors ? errors.length + " errors occurred during unsubscription: " + errors.map(function (err, i) { return i + 1 + ") " + err.toString(); }).join(" ") : ""; this.name = "UnsubscriptionError"; this.errors = errors; }; }); function arrRemove(arr, item) { if (arr) { var index = arr.indexOf(item); 0 <= index && arr.splice(index, 1); } } var Subscription = (function () { function Subscription(initialTeardown) { this.initialTeardown = initialTeardown; this.closed = false; this._parentage = null; this._finalizers = null; } Subscription.prototype.unsubscribe = function () { var e_1, _a, e_2, _b; var errors; if (!this.closed) { this.closed = true; var _parentage = this._parentage; if (_parentage) { this._parentage = null; if (Array.isArray(_parentage)) { try { for (var _parentage_1 = __values(_parentage), _parentage_1_1 = _parentage_1.next(); !_parentage_1_1.done; _parentage_1_1 = _parentage_1.next()) { var parent_1 = _parentage_1_1.value; parent_1.remove(this); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (_parentage_1_1 && !_parentage_1_1.done && (_a = _parentage_1.return)) _a.call(_parentage_1); } finally { if (e_1) throw e_1.error; } } } else { _parentage.remove(this); } } var initialFinalizer = this.initialTeardown; if (isFunction(initialFinalizer)) { try { initialFinalizer(); } catch (e) { errors = e instanceof UnsubscriptionError ? e.errors : [e]; } } var _finalizers = this._finalizers; if (_finalizers) { this._finalizers = null; try { for (var _finalizers_1 = __values(_finalizers), _finalizers_1_1 = _finalizers_1.next(); !_finalizers_1_1.done; _finalizers_1_1 = _finalizers_1.next()) { var finalizer = _finalizers_1_1.value; try { execFinalizer(finalizer); } catch (err) { errors = errors !== null && errors !== void 0 ? errors : []; if (err instanceof UnsubscriptionError) { errors = __spreadArray(__spreadArray([], __read(errors)), __read(err.errors)); } else { errors.push(err); } } } } catch (e_2_1) { e_2 = { error: e_2_1 }; } finally { try { if (_finalizers_1_1 && !_finalizers_1_1.done && (_b = _finalizers_1.return)) _b.call(_finalizers_1); } finally { if (e_2) throw e_2.error; } } } if (errors) { throw new UnsubscriptionError(errors); } } }; Subscription.prototype.add = function (teardown) { var _a; if (teardown && teardown !== this) { if (this.closed) { execFinalizer(teardown); } else { if (teardown instanceof Subscription) { if (teardown.closed || teardown._hasParent(this)) { return; } teardown._addParent(this); } (this._finalizers = (_a = this._finalizers) !== null && _a !== void 0 ? _a : []).push(teardown); } } }; Subscription.prototype._hasParent = function (parent) { var _parentage = this._parentage; return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent)); }; Subscription.prototype._addParent = function (parent) { var _parentage = this._parentage; this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent; }; Subscription.prototype._removeParent = function (parent) { var _parentage = this._parentage; if (_parentage === parent) { this._parentage = null; } else if (Array.isArray(_parentage)) { arrRemove(_parentage, parent); } }; Subscription.prototype.remove = function (teardown) { var _finalizers = this._finalizers; _finalizers && arrRemove(_finalizers, teardown); if (teardown instanceof Subscription) { teardown._removeParent(this); } }; Subscription.EMPTY = (function () { var empty = new Subscription(); empty.closed = true; return empty; })(); return Subscription; }()); var EMPTY_SUBSCRIPTION = Subscription.EMPTY; function isSubscription(value) { return (value instanceof Subscription || (value && "closed" in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))); } function execFinalizer(finalizer) { if (isFunction(finalizer)) { finalizer(); } else { finalizer.unsubscribe(); } } var config = { onUnhandledError: null, onStoppedNotification: null, Promise: undefined, useDeprecatedSynchronousErrorHandling: false, useDeprecatedNextContext: false, }; var timeoutProvider = { setTimeout: function (handler, timeout) { var args = []; for (var _i = 2; _i < arguments.length; _i++) { args[_i - 2] = arguments[_i]; } var delegate = timeoutProvider.delegate; if (delegate === null || delegate === void 0 ? void 0 : delegate.setTimeout) { return delegate.setTimeout.apply(delegate, __spreadArray([handler, timeout], __read(args))); } return setTimeout.apply(void 0, __spreadArray([handler, timeout], __read(args))); }, clearTimeout: function (handle) { var delegate = timeoutProvider.delegate; return ((delegate === null || delegate === void 0 ? void 0 : delegate.clearTimeout) || clearTimeout)(handle); }, delegate: undefined, }; function reportUnhandledError(err) { timeoutProvider.setTimeout(function () { { throw err; } }); } function noop() { } function errorContext(cb) { { cb(); } } var Subscriber = (function (_super) { __extends(Subscriber, _super); function Subscriber(destination) { var _this = _super.call(this) || this; _this.isStopped = false; if (destination) { _this.destination = destination; if (isSubscription(destination)) { destination.add(_this); } } else { _this.destination = EMPTY_OBSERVER; } return _this; } Subscriber.create = function (next, error, complete) { return new SafeSubscriber(next, error, complete); }; Subscriber.prototype.next = function (value) { if (this.isStopped) ; else { this._next(value); } }; Subscriber.prototype.error = function (err) { if (this.isStopped) ; else { this.isStopped = true; this._error(err); } }; Subscriber.prototype.complete = function () { if (this.isStopped) ; else { this.isStopped = true; this._complete(); } }; Subscriber.prototype.unsubscribe = function () { if (!this.closed) { this.isStopped = true; _super.prototype.unsubscribe.call(this); this.destination = null; } }; Subscriber.prototype._next = function (value) { this.destination.next(value); }; Subscriber.prototype._error = function (err) { try { this.destination.error(err); } finally { this.unsubscribe(); } }; Subscriber.prototype._complete = function () { try { this.destination.complete(); } finally { this.unsubscribe(); } }; return Subscriber; }(Subscription)); var _bind = Function.prototype.bind; function bind(fn, thisArg) { return _bind.call(fn, thisArg); } var ConsumerObserver = (function () { function ConsumerObserver(partialObserver) { this.partialObserver = partialObserver; } ConsumerObserver.prototype.next = function (value) { var partialObserver = this.partialObserver; if (partialObserver.next) { try { partialObserver.next(value); } catch (error) { handleUnhandledError(error); } } }; ConsumerObserver.prototype.error = function (err) { var partialObserver = this.partialObserver; if (partialObserver.error) { try { partialObserver.error(err); } catch (error) { handleUnhandledError(error); } } else { handleUnhandledError(err); } }; ConsumerObserver.prototype.complete = function () { var partialObserver = this.partialObserver; if (partialObserver.complete) { try { partialObserver.complete(); } catch (error) { handleUnhandledError(error); } } }; return ConsumerObserver; }()); var SafeSubscriber = (function (_super) { __extends(SafeSubscriber, _super); function SafeSubscriber(observerOrNext, error, complete) { var _this = _super.call(this) || this; var partialObserver; if (isFunction(observerOrNext) || !observerOrNext) { partialObserver = { next: (observerOrNext !== null && observerOrNext !== void 0 ? observerOrNext : undefined), error: error !== null && error !== void 0 ? error : undefined, complete: complete !== null && complete !== void 0 ? complete : undefined, }; } else { var context_1; if (_this && config.useDeprecatedNextContext) { context_1 = Object.create(observerOrNext); context_1.unsubscribe = function () { return _this.unsubscribe(); }; partialObserver = { next: observerOrNext.next && bind(observerOrNext.next, context_1), error: observerOrNext.error && bind(observerOrNext.error, context_1), complete: observerOrNext.complete && bind(observerOrNext.complete, context_1), }; } else { partialObserver = observerOrNext; } } _this.destination = new ConsumerObserver(partialObserver); return _this; } return SafeSubscriber; }(Subscriber)); function handleUnhandledError(error) { { reportUnhandledError(error); } } function defaultErrorHandler(err) { throw err; } var EMPTY_OBSERVER = { closed: true, next: noop, error: defaultErrorHandler, complete: noop, }; var observable = (function () { return (typeof Symbol === "function" && Symbol.observable) || "@@observable"; })(); function identity(x) { return x; } function pipeFromArray(fns) { if (fns.length === 0) { return identity; } if (fns.length === 1) { return fns[0]; } return function piped(input) { return fns.reduce(function (prev, fn) { return fn(prev); }, input); }; } var Observable = (function () { function Observable(subscribe) { if (subscribe) { this._subscribe = subscribe; } } Observable.prototype.lift = function (operator) { var observable = new Observable(); observable.source = this; observable.operator = operator; return observable; }; Observable.prototype.subscribe = function (observerOrNext, error, complete) { var _this = this; var subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete); errorContext(function () { var _a = _this, operator = _a.operator, source = _a.source; subscriber.add(operator ? operator.call(subscriber, source) : source ? _this._subscribe(subscriber) : _this._trySubscribe(subscriber)); }); return subscriber; }; Observable.prototype._trySubscribe = function (sink) { try { return this._subscribe(sink); } catch (err) { sink.error(err); } }; Observable.prototype.forEach = function (next, promiseCtor) { var _this = this; promiseCtor = getPromiseCtor(promiseCtor); return new promiseCtor(function (resolve, reject) { var subscriber = new SafeSubscriber({ next: function (value) { try { next(value); } catch (err) { reject(err); subscriber.unsubscribe(); } }, error: reject, complete: resolve, }); _this.subscribe(subscriber); }); }; Observable.prototype._subscribe = function (subscriber) { var _a; return (_a = this.source) === null || _a === void 0 ? void 0 : _a.subscribe(subscriber); }; Observable.prototype[observable] = function () { return this; }; Observable.prototype.pipe = function () { var operations = []; for (var _i = 0; _i < arguments.length; _i++) { operations[_i] = arguments[_i]; } return pipeFromArray(operations)(this); }; Observable.prototype.toPromise = function (promiseCtor) { var _this = this; promiseCtor = getPromiseCtor(promiseCtor); return new promiseCtor(function (resolve, reject) { var value; _this.subscribe(function (x) { return (value = x); }, function (err) { return reject(err); }, function () { return resolve(value); }); }); }; Observable.create = function (subscribe) { return new Observable(subscribe); }; return Observable; }()); function getPromiseCtor(promiseCtor) { var _a; return (_a = promiseCtor !== null && promiseCtor !== void 0 ? promiseCtor : config.Promise) !== null && _a !== void 0 ? _a : Promise; } function isObserver(value) { return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete); } function isSubscriber(value) { return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value)); } function hasLift(source) { return isFunction(source === null || source === void 0 ? void 0 : source.lift); } function operate(init) { return function (source) { if (hasLift(source)) { return source.lift(function (liftedSource) { try { return init(liftedSource, this); } catch (err) { this.error(err); } }); } throw new TypeError("Unable to lift unknown Observable type"); }; } function createOperatorSubscriber(destination, onNext, onComplete, onError, onFinalize) { return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize); } var OperatorSubscriber = (function (_super) { __extends(OperatorSubscriber, _super); function OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize, shouldUnsubscribe) { var _this = _super.call(this, destination) || this; _this.onFinalize = onFinalize; _this.shouldUnsubscribe = shouldUnsubscribe; _this._next = onNext ? function (value) { try { onNext(value); } catch (err) { destination.error(err); } } : _super.prototype._next; _this._error = onError ? function (err) { try { onError(err); } catch (err) { destination.error(err); } finally { this.unsubscribe(); } } : _super.prototype._error; _this._complete = onComplete ? function () { try { onComplete(); } catch (err) { destination.error(err); } finally { this.unsubscribe(); } } : _super.prototype._complete; return _this; } OperatorSubscriber.prototype.unsubscribe = function () { var _a; if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) { var closed_1 = this.closed; _super.prototype.unsubscribe.call(this); !closed_1 && ((_a = this.onFinalize) === null || _a === void 0 ? void 0 : _a.call(this)); } }; return OperatorSubscriber; }(Subscriber)); function refCount() { return operate(function (source, subscriber) { var connection = null; source._refCount++; var refCounter = createOperatorSubscriber(subscriber, undefined, undefined, undefined, function () { if (!source || source._refCount <= 0 || 0 < --source._refCount) { connection = null; return; } var sharedConnection = source._connection; var conn = connection; connection = null; if (sharedConnection && (!conn || sharedConnection === conn)) { sharedConnection.unsubscribe(); } subscriber.unsubscribe(); }); source.subscribe(refCounter); if (!refCounter.closed) { connection = source.connect(); } }); } var ConnectableObservable = (function (_super) { __extends(ConnectableObservable, _super); function ConnectableObservable(source, subjectFactory) { var _this = _super.call(this) || this; _this.source = source; _this.subjectFactory = subjectFactory; _this._subject = null; _this._refCount = 0; _this._connection = null; if (hasLift(source)) { _this.lift = source.lift; } return _this; } ConnectableObservable.prototype._subscribe = function (subscriber) { return this.getSubject().subscribe(subscriber); }; ConnectableObservable.prototype.getSubject = function () { var subject = this._subject; if (!subject || subject.isStopped) { this._subject = this.subjectFactory(); } return this._subject; }; ConnectableObservable.prototype._teardown = function () { this._refCount = 0; var _connection = this._connection; this._subject = this._connection = null; _connection === null || _connection === void 0 ? void 0 : _connection.unsubscribe(); }; ConnectableObservable.prototype.connect = function () { var _this = this; var connection = this._connection; if (!connection) { connection = this._connection = new Subscription(); var subject_1 = this.getSubject(); connection.add(this.source.subscribe(createOperatorSubscriber(subject_1, undefined, function () { _this._teardown(); subject_1.complete(); }, function (err) { _this._teardown(); subject_1.error(err); }, function () { return _this._teardown(); }))); if (connection.closed) { this._connection = null; connection = Subscription.EMPTY; } } return connection; }; ConnectableObservable.prototype.refCount = function () { return refCount()(this); }; return ConnectableObservable; }(Observable)); var ObjectUnsubscribedError = createErrorClass(function (_super) { return function ObjectUnsubscribedErrorImpl() { _super(this); this.name = "ObjectUnsubscribedError"; this.message = "object unsubscribed"; }; }); var Subject = (function (_super) { __extends(Subject, _super); function Subject() { var _this = _super.call(this) || this; _this.closed = false; _this.currentObservers = null; _this.observers = []; _this.isStopped = false; _this.hasError = false; _this.thrownError = null; return _this; } Subject.prototype.lift = function (operator) { var subject = new AnonymousSubject(this, this); subject.operator = operator; return subject; }; Subject.prototype._throwIfClosed = function () { if (this.closed) { throw new ObjectUnsubscribedError(); } }; Subject.prototype.next = function (value) { var _this = this; errorContext(function () { var e_1, _a; _this._throwIfClosed(); if (!_this.isStopped) { if (!_this.currentObservers) { _this.currentObservers = Array.from(_this.observers); } try { for (var _b = __values(_this.currentObservers), _c = _b.next(); !_c.done; _c = _b.next()) { var observer = _c.value; observer.next(value); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (_c && !_c.done && (_a = _b.return)) _a.call(_b); } finally { if (e_1) throw e_1.error; } } } }); }; Subject.prototype.error = function (err) { var _this = this; errorContext(function () { _this._throwIfClosed(); if (!_this.isStopped) { _this.hasError = _this.isStopped = true; _this.thrownError = err; var observers = _this.observers; while (observers.length) { observers.shift().error(err); } } }); }; Subject.prototype.complete = function () { var _this = this; errorContext(function () { _this._throwIfClosed(); if (!_this.isStopped) { _this.isStopped = true; var observers = _this.observers; while (observers.length) { observers.shift().complete(); } } }); }; Subject.prototype.unsubscribe = function () { this.isStopped = this.closed = true; this.observers = this.currentObservers = null; }; Object.defineProperty(Subject.prototype, "observed", { get: function () { var _a; return ((_a = this.observers) === null || _a === void 0 ? void 0 : _a.length) > 0; }, enumerable: false, configurable: true }); Subject.prototype._trySubscribe = function (subscriber) { this._throwIfClosed(); return _super.prototype._trySubscribe.call(this, subscriber); }; Subject.prototype._subscribe = function (subscriber) { this._throwIfClosed(); this._checkFinalizedStatuses(subscriber); return this._innerSubscribe(subscriber); }; Subject.prototype._innerSubscribe = function (subscriber) { var _this = this; var _a = this, hasError = _a.hasError, isStopped = _a.isStopped, observers = _a.observers; if (hasError || isStopped) { return EMPTY_SUBSCRIPTION; } this.currentObservers = null; observers.push(subscriber); return new Subscription(function () { _this.currentObservers = null; arrRemove(observers, subscriber); }); }; Subject.prototype._checkFinalizedStatuses = function (subscriber) { var _a = this, hasError = _a.hasError, thrownError = _a.thrownError, isStopped = _a.isStopped; if (hasError) { subscriber.error(thrownError); } else if (isStopped) { subscriber.complete(); } }; Subject.prototype.asObservable = function () { var observable = new Observable(); observable.source = this; return observable; }; Subject.create = function (destination, source) { return new AnonymousSubject(destination, source); }; return Subject; }(Observable)); var AnonymousSubject = (function (_super) { __extends(AnonymousSubject, _super); function AnonymousSubject(destination, source) { var _this = _super.call(this) || this; _this.destination = destination; _this.source = source; return _this; } AnonymousSubject.prototype.next = function (value) { var _a, _b; (_b = (_a = this.destination) === null || _a === void 0 ? void 0 : _a.next) === null || _b === void 0 ? void 0 : _b.call(_a, value); }; AnonymousSubject.prototype.error = function (err) { var _a, _b; (_b = (_a = this.destination) === null || _a === void 0 ? void 0 : _a.error) === null || _b === void 0 ? void 0 : _b.call(_a, err); }; AnonymousSubject.prototype.complete = function () { var _a, _b; (_b = (_a = this.destination) === null || _a === void 0 ? void 0 : _a.complete) === null || _b === void 0 ? void 0 : _b.call(_a); }; AnonymousSubject.prototype._subscribe = function (subscriber) { var _a, _b; return (_b = (_a = this.source) === null || _a === void 0 ? void 0 : _a.subscribe(subscriber)) !== null && _b !== void 0 ? _b : EMPTY_SUBSCRIPTION; }; return AnonymousSubject; }(Subject)); var BehaviorSubject = (function (_super) { __extends(BehaviorSubject, _super); function BehaviorSubject(_value) { var _this = _super.call(this) || this; _this._value = _value; return _this; } Object.defineProperty(BehaviorSubject.prototype, "value", { get: function () { return this.getValue(); }, enumerable: false, configurable: true }); BehaviorSubject.prototype._subscribe = function (subscriber) { var subscription = _super.prototype._subscribe.call(this, subscriber); !subscription.closed && subscriber.next(this._value); return subscription; }; BehaviorSubject.prototype.getValue = function () { var _a = this, hasError = _a.hasError, thrownError = _a.thrownError, _value = _a._value; if (hasError) { throw thrownError; } this._throwIfClosed(); return _value; }; BehaviorSubject.prototype.next = function (value) { _super.prototype.next.call(this, (this._value = value)); }; return BehaviorSubject; }(Subject)); var dateTimestampProvider = { now: function () { return (dateTimestampProvider.delegate || Date).now(); }, delegate: undefined, }; var ReplaySubject = (function (_super) { __extends(ReplaySubject, _super); function ReplaySubject(_bufferSize, _windowTime, _timestampProvider) { if (_bufferSize === void 0) { _bufferSize = Infinity; } if (_windowTime === void 0) { _windowTime = Infinity; } if (_timestampProvider === void 0) { _timestampProvider = dateTimestampProvider; } var _this = _super.call(this) || this; _this._bufferSize = _bufferSize; _this._windowTime = _windowTime; _this._timestampProvider = _timestampProvider; _this._buffer = []; _this._infiniteTimeWindow = true; _this._infiniteTimeWindow = _windowTime === Infinity; _this._bufferSize = Math.max(1, _bufferSize); _this._windowTime = Math.max(1, _windowTime); return _this; } ReplaySubject.prototype.next = function (value) { var _a = this, isStopped = _a.isStopped, _buffer = _a._buffer, _infiniteTimeWindow = _a._infiniteTimeWindow, _timestampProvider = _a._timestampProvider, _windowTime = _a._windowTime; if (!isStopped) { _buffer.push(value); !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime); } this._trimBuffer(); _super.prototype.next.call(this, value); }; ReplaySubject.prototype._subscribe = function (subscriber) { this._throwIfClosed(); this._trimBuffer(); var subscription = this._innerSubscribe(subscriber); var _a = this, _infiniteTimeWindow = _a._infiniteTimeWindow, _buffer = _a._buffer; var copy = _buffer.slice(); for (var i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) { subscriber.next(copy[i]); } this._checkFinalizedStatuses(subscriber); return subscription; }; ReplaySubject.prototype._trimBuffer = function () { var _a = this, _bufferSize = _a._bufferSize, _timestampProvider = _a._timestampProvider, _buffer = _a._buffer, _infiniteTimeWindow = _a._infiniteTimeWindow; var adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize; _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize); if (!_infiniteTimeWindow) { var now = _timestampProvider.now(); var last = 0; for (var i = 1; i < _buffer.length && _buffer[i] <= now; i += 2) { last = i; } last && _buffer.splice(0, last + 1); } }; return ReplaySubject; }(Subject)); var Action = (function (_super) { __extends(Action, _super); function Action(scheduler, work) { return _super.call(this) || this; } Action.prototype.schedule = function (state, delay) { return this; }; return Action; }(Subscription)); var intervalProvider = { setInterval: function (handler, timeout) { var args = []; for (var _i = 2; _i < arguments.length; _i++) { args[_i - 2] = arguments[_i]; } var delegate = intervalProvider.delegate; if (delegate === null || delegate === void 0 ? void 0 : delegate.setInterval) { return delegate.setInterval.apply(delegate, __spreadArray([handler, timeout], __read(args))); } return setInterval.apply(void 0, __spreadArray([handler, timeout], __read(args))); }, clearInterval: function (handle) { var delegate = intervalProvider.delegate; return ((delegate === null || delegate === void 0 ? void 0 : delegate.clearInterval) || clearInterval)(handle); }, delegate: undefined, }; var AsyncAction = (function (_super) { __extends(AsyncAction, _super); function AsyncAction(scheduler, work) { var _this = _super.call(this, scheduler, work) || this; _this.scheduler = scheduler; _this.work = work; _this.pending = false; return _this; } AsyncAction.prototype.schedule = function (state, delay) { var _a; if (delay === void 0) { delay = 0; } if (this.closed) { return this; } this.state = state; var id = this.id; var scheduler = this.scheduler; if (id != null) { this.id = this.recycleAsyncId(scheduler, id, delay); } this.pending = true; this.delay = delay; this.id = (_a = this.id) !== null && _a !== void 0 ? _a : this.requestAsyncId(scheduler, this.id, delay); return this; }; AsyncAction.prototype.requestAsyncId = function (scheduler, _id, delay) { if (delay === void 0) { delay = 0; } return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay); }; AsyncAction.prototype.recycleAsyncId = function (_scheduler, id, delay) { if (delay === void 0) { delay = 0; } if (delay != null && this.delay === delay && this.pending === false) { return id; } if (id != null) { intervalProvider.clearInterval(id); } return undefined; }; AsyncAction.prototype.execute = function (state, delay) { if (this.closed) { return new Error("executing a cancelled action"); } this.pending = false; var error = this._execute(state, delay); if (error) { return error; } else if (this.pending === false && this.id != null) { this.id = this.recycleAsyncId(this.scheduler, this.id, null); } }; AsyncAction.prototype._execute = function (state, _delay) { var errored = false; var errorValue; try { this.work(state); } catch (e) { errored = true; errorValue = e ? e : new Error("Scheduled action threw falsy error"); } if (errored) { this.unsubscribe(); return errorValue; } }; AsyncAction.prototype.unsubscribe = function () { if (!this.closed) { var _a = this, id = _a.id, scheduler = _a.scheduler; var actions = scheduler.actions; this.work = this.state = this.scheduler = null; this.pending = false; arrRemove(actions, this); if (id != null) { this.id = this.recycleAsyncId(scheduler, id, null); } this.delay = null; _super.prototype.unsubscribe.call(this); } }; return AsyncAction; }(Action)); var Scheduler = (function () { function Scheduler(schedulerActionCtor, now) { if (now === void 0) { now = Scheduler.now; } this.schedulerActionCtor = schedulerActionCtor; this.now = now; } Scheduler.prototype.schedule = function (work, delay, state) { if (delay === void 0) { delay = 0; } return new this.schedulerActionCtor(this, work).schedule(state, delay); }; Scheduler.now = dateTimestampProvider.now; return Scheduler; }()); var AsyncScheduler = (function (_super) { __extends(AsyncScheduler, _super); function AsyncScheduler(SchedulerAction, now) { if (now === void 0) { now = Scheduler.now; } var _this = _super.call(this, SchedulerAction, now) || this; _this.actions = []; _this._active = false; return _this; } AsyncScheduler.prototype.flush = function (action) { var actions = this.actions; if (this._active) { actions.push(action); return; } var error; this._active = true; do { if ((error = action.execute(action.state, action.delay))) { break; } } while ((action = actions.shift())); this._active = false; if (error) { while ((action = actions.shift())) { action.unsubscribe(); } throw error; } }; return AsyncScheduler; }(Scheduler)); var asyncScheduler = new AsyncScheduler(AsyncAction); var async = asyncScheduler; var EMPTY$1 = new Observable(function (subscriber) { return subscriber.complete(); }); function empty(scheduler) { return scheduler ? emptyScheduled(scheduler) : EMPTY$1; } function emptyScheduled(scheduler) { return new Observable(function (subscriber) { return scheduler.schedule(function () { return subscriber.complete(); }); }); } function isScheduler(value) { return value && isFunction(value.schedule); } function last$1(arr) { return arr[arr.length - 1]; } function popResultSelector(args) { return isFunction(last$1(args)) ? args.pop() : undefined; } function popScheduler(args) { return isScheduler(last$1(args)) ? args.pop() : undefined; } function popNumber(args, defaultValue) { return typeof last$1(args) === "number" ? args.pop() : defaultValue; } var isArrayLike = (function (x) { return x && typeof x.length === "number" && typeof x !== "function"; }); function isPromise(value) { return isFunction(value === null || value === void 0 ? void 0 : value.then); } function isInteropObservable(input) { return isFunction(input[observable]); } function isAsyncIterable(obj) { return Symbol.asyncIterator && isFunction(obj === null || obj === void 0 ? void 0 : obj[Symbol.asyncIterator]); } function createInvalidObservableTypeError(input) { return new TypeError("You provided " + (input !== null && typeof input === "object" ? "an invalid object" : """ + input + """) + " where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable."); } function getSymbolIterator() { if (typeof Symbol !== "function" || !Symbol.iterator) { return "@@iterator"; } return Symbol.iterator; } var iterator = getSymbolIterator(); function isIterable(input) { return isFunction(input === null || input === void 0 ? void 0 : input[iterator]); } function readableStreamLikeToAsyncGenerator(readableStream) { return __asyncGenerator(this, arguments, function readableStreamLikeToAsyncGenerator_1() { var reader, _a, value, done; return __generator(this, function (_b) { switch (_b.label) { case 0: reader = readableStream.getReader(); _b.label = 1; case 1: _b.trys.push([1, , 9, 10]); _b.label = 2; case 2: return [4, __await(reader.read())]; case 3: _a = _b.sent(), value = _a.value, done = _a.done; if (!done) return [3, 5]; return [4, __await(void 0)]; case 4: return [2, _b.sent()]; case 5: return [4, __await(value)]; case 6: return [4, _b.sent()]; case 7: _b.sent(); return [3, 2]; case 8: return [3, 10]; case 9: reader.releaseLock(); return [7]; case 10: return [2]; } }); }); } function isReadableStreamLike(obj) { return isFunction(obj === null || obj === void 0 ? void 0 : obj.getReader); } function innerFrom(input) { if (input instanceof Observable) { return input; } if (input != null) { if (isInteropObservable(input)) { return fromInteropObservable(input); } if (isArrayLike(input)) { return fromArrayLike(input); } if (isPromise(input)) { return fromPromise(input); } if (isAsyncIterable(input)) { return fromAsyncIterable(input); } if (isIterable(input)) { return fromIterable(input); } if (isReadableStreamLike(input)) { return fromReadableStreamLike(input); } } throw createInvalidObservableTypeError(input); } function fromInteropObservable(obj) { return new Observable(function (subscriber) { var obs = obj[observable](); if (isFunction(obs.subscribe)) { return obs.subscribe(subscriber); } throw new TypeError("Provided object does not correctly implement Symbol.observable"); }); } function fromArrayLike(array) { return new Observable(function (subscriber) { for (var i = 0; i < array.length && !subscriber.closed; i++) { subscriber.next(array[i]); } subscriber.complete(); }); } function fromPromise(promise) { return new Observable(function (subscriber) { promise .then(function (value) { if (!subscriber.closed) { subscriber.next(value); subscriber.complete(); } }, function (err) { return subscriber.error(err); }) .then(null, reportUnhandledError); }); } function fromIterable(iterable) { return new Observable(function (subscriber) { var e_1, _a; try { for (var iterable_1 = __values(iterable), iterable_1_1 = iterable_1.next(); !iterable_1_1.done; iterable_1_1 = iterable_1.next()) { var value = iterable_1_1.value; subscriber.next(value); if (subscriber.closed) { return; } } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (iterable_1_1 && !iterable_1_1.done && (_a = iterable_1.return)) _a.call(iterable_1); } finally { if (e_1) throw e_1.error; } } subscriber.complete(); }); } function fromAsyncIterable(asyncIterable) { return new Observable(function (subscriber) { process(asyncIterable, subscriber).catch(function (err) { return subscriber.error(err); }); }); } function fromReadableStreamLike(readableStream) { return fromAsyncIterable(readableStreamLikeToAsyncGenerator(readableStream)); } function process(asyncIterable, subscriber) { var asyncIterable_1, asyncIterable_1_1; var e_2, _a; return __awaiter(this, void 0, void 0, function () { var value, e_2_1; return __generator(this, function (_b) { switch (_b.label) { case 0: _b.trys.push([0, 5, 6, 11]); asyncIterable_1 = __asyncValues(asyncIterable); _b.label = 1; case 1: return [4, asyncIterable_1.next()]; case 2: if (!(asyncIterable_1_1 = _b.sent(), !asyncIterable_1_1.done)) return [3, 4]; value = asyncIterable_1_1.value; subscriber.next(value); if (subscriber.closed) { return [2]; } _b.label = 3; case 3: return [3, 1]; case 4: return [3, 11]; case 5: e_2_1 = _b.sent(); e_2 = { error: e_2_1 }; return [3, 11]; case 6: _b.trys.push([6, , 9, 10]); if (!(asyncIterable_1_1 && !asyncIterable_1_1.done && (_a = asyncIterable_1.return))) return [3, 8]; return [4, _a.call(asyncIterable_1)]; case 7: _b.sent(); _b.label = 8; case 8: return [3, 10]; case 9: if (e_2) throw e_2.error; return [7]; case 10: return [7]; case 11: subscriber.complete(); return [2]; } }); }); } function executeSchedule(parentSubscription, scheduler, work, delay, repeat) { if (delay === void 0) { delay = 0; } if (repeat === void 0) { repeat = false; } var scheduleSubscription = scheduler.schedule(function () { work(); if (repeat) { parentSubscription.add(this.schedule(null, delay)); } else { this.unsubscribe(); } }, delay); parentSubscription.add(scheduleSubscription); if (!repeat) { return scheduleSubscription; } } function observeOn(scheduler, delay) { if (delay === void 0) { delay = 0; } return operate(function (source, subscriber) { source.subscribe(createOperatorSubscriber(subscriber, function (value) { return executeSchedule(subscriber, scheduler, function () { return subscriber.next(value); }, delay); }, function () { return executeSchedule(subscriber, scheduler, function () { return subscriber.complete(); }, delay); }, function (err) { return executeSchedule(subscriber, scheduler, function () { return subscriber.error(err); }, delay); })); }); } function subscribeOn(scheduler, delay) { if (delay === void 0) { delay = 0; } return operate(function (source, subscriber) { subscriber.add(scheduler.schedule(function () { return source.subscribe(subscriber); }, delay)); }); } function scheduleObservable(input, scheduler) { return innerFrom(input).pipe(subscribeOn(scheduler), observeOn(scheduler)); } function schedulePromise(input, scheduler) { return innerFrom(input).pipe(subscribeOn(scheduler), observeOn(scheduler)); } function scheduleArray(input, scheduler) { return new Observable(function (subscriber) { var i = 0; return scheduler.schedule(function () { if (i === input.length) { subscriber.complete(); } else { subscriber.next(input[i++]); if (!subscriber.closed) { this.schedule(); } } }); }); } function scheduleIterable(input, scheduler) { return new Observable(function (subscriber) { var iterator$1; executeSchedule(subscriber, scheduler, function () { iterator$1 = input[iterator](); executeSchedule(subscriber, scheduler, function () { var _a; var value; var done; try { (_a = iterator$1.next(), value = _a.value, done = _a.done); } catch (err) { subscriber.error(err); return; } if (done) { subscriber.complete(); } else { subscriber.next(value); } }, 0, true); }); return function () { return isFunction(iterator$1 === null || iterator$1 === void 0 ? void 0 : iterator$1.return) && iterator$1.return(); }; }); } function scheduleAsyncIterable(input, scheduler) { if (!input) { throw new Error("Iterable cannot be null"); } return new Observable(function (subscriber) { executeSchedule(subscriber, scheduler, function () { var iterator = input[Symbol.asyncIterator](); executeSchedule(subscriber, scheduler, function () { iterator.next().then(function (result) { if (result.done) { subscriber.complete(); } else { subscriber.next(result.value); } }); }, 0, true); }); }); } function scheduleReadableStreamLike(input, scheduler) { return scheduleAsyncIterable(readableStreamLikeToAsyncGenerator(input), scheduler); } function scheduled(input, scheduler) { if (input != null) { if (isInteropObservable(input)) { return scheduleObservable(input, scheduler); } if (isArrayLike(input)) { return scheduleArray(input, scheduler); } if (isPromise(input)) { return schedulePromise(input, scheduler); } if (isAsyncIterable(input)) { return scheduleAsyncIterable(input, scheduler); } if (isIterable(input)) { return scheduleIterable(input, scheduler); } if (isReadableStreamLike(input)) { return scheduleReadableStreamLike(input, scheduler); } } throw createInvalidObservableTypeError(input); } function from(input, scheduler) { return scheduler ? scheduled(input, scheduler) : innerFrom(input); } function of() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var scheduler = popScheduler(args); return from(args, scheduler); } function throwError(errorOrErrorFactory, scheduler) { var errorFactory = isFunction(errorOrErrorFactory) ? errorOrErrorFactory : function () { return errorOrErrorFactory; }; var init = function (subscriber) { return subscriber.error(errorFactory()); }; return new Observable(scheduler ? function (subscriber) { return scheduler.schedule(init, 0, subscriber); } : init); } var EmptyError = createErrorClass(function (_super) { return function EmptyErrorImpl() { _super(this); this.name = "EmptyError"; this.message = "no elements in sequence"; }; }); function isValidDate(value) { return value instanceof Date && !isNaN(value); } var TimeoutError = createErrorClass(function (_super) { return function TimeoutErrorImpl(info) { if (info === void 0) { info = null; } _super(this); this.message = "Timeout has occurred"; this.name = "TimeoutError"; this.info = info; }; }); function timeout(config, schedulerArg) { var _a = (isValidDate(config) ? { first: config } : typeof config === "number" ? { each: config } : config), first = _a.first, each = _a.each, _b = _a.with, _with = _b === void 0 ? timeoutErrorFactory : _b, _c = _a.scheduler, scheduler = _c === void 0 ? schedulerArg !== null && schedulerArg !== void 0 ? schedulerArg : asyncScheduler : _c, _d = _a.meta, meta = _d === void 0 ? null : _d; if (first == null && each == null) { throw new TypeError("No timeout provided."); } return operate(function (source, subscriber) { var originalSourceSubscription; var timerSubscription; var lastValue = null; var seen = 0; var startTimer = function (delay) { timerSubscription = executeSchedule(subscriber, scheduler, function () { try { originalSourceSubscription.unsubscribe(); innerFrom(_with({ meta: meta, lastValue: lastValue, seen: seen, })).subscribe(subscriber); } catch (err) { subscriber.error(err); } }, delay); }; originalSourceSubscription = source.subscribe(createOperatorSubscriber(subscriber, function (value) { timerSubscription === null || timerSubscription === void 0 ? void 0 : timerSubscription.unsubscribe(); seen++; subscriber.next((lastValue = value)); each > 0 && startTimer(each); }, undefined, undefined, function () { if (!(timerSubscription === null || timerSubscription === void 0 ? void 0 : timerSubscription.closed)) { timerSubscription === null || timerSubscription === void 0 ? void 0 : timerSubscription.unsubscribe(); } lastValue = null; })); !seen && startTimer(first != null ? (typeof first === "number" ? first : +first - scheduler.now()) : each); }); } function timeoutErrorFactory(info) { throw new TimeoutError(info); } function map(project, thisArg) { return operate(function (source, subscriber) { var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { subscriber.next(project.call(thisArg, value, index++)); })); }); } var isArray$6 = Array.isArray; function callOrApply(fn, args) { return isArray$6(args) ? fn.apply(void 0, __spreadArray([], __read(args))) : fn(args); } function mapOneOrManyArgs(fn) { return map(function (args) { return callOrApply(fn, args); }); } var isArray$5 = Array.isArray; var getPrototypeOf = Object.getPrototypeOf, objectProto = Object.prototype, getKeys = Object.keys; function argsArgArrayOrObject(args) { if (args.length === 1) { var first_1 = args[0]; if (isArray$5(first_1)) { return { args: first_1, keys: null }; } if (isPOJO(first_1)) { var keys = getKeys(first_1); return { args: keys.map(function (key) { return first_1[key]; }), keys: keys, }; } } return { args: args, keys: null }; } function isPOJO(obj) { return obj && typeof obj === "object" && getPrototypeOf(obj) === objectProto; } function createObject(keys, values) { return keys.reduce(function (result, key, i) { return ((result[key] = values[i]), result); }, {}); } function combineLatest() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var scheduler = popScheduler(args); var resultSelector = popResultSelector(args); var _a = argsArgArrayOrObject(args), observables = _a.args, keys = _a.keys; if (observables.length === 0) { return from([], scheduler); } var result = new Observable(combineLatestInit(observables, scheduler, keys ? function (values) { return createObject(keys, values); } : identity)); return resultSelector ? result.pipe(mapOneOrManyArgs(resultSelector)) : result; } function combineLatestInit(observables, scheduler, valueTransform) { if (valueTransform === void 0) { valueTransform = identity; } return function (subscriber) { maybeSchedule(scheduler, function () { var length = observables.length; var values = new Array(length); var active = length; var remainingFirstValues = length; var _loop_1 = function (i) { maybeSchedule(scheduler, function () { var source = from(observables[i], scheduler); var hasFirstValue = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { values[i] = value; if (!hasFirstValue) { hasFirstValue = true; remainingFirstValues--; } if (!remainingFirstValues) { subscriber.next(valueTransform(values.slice())); } }, function () { if (!--active) { subscriber.complete(); } })); }, subscriber); }; for (var i = 0; i < length; i++) { _loop_1(i); } }, subscriber); }; } function maybeSchedule(scheduler, execute, subscription) { if (scheduler) { executeSchedule(subscription, scheduler, execute); } else { execute(); } } function mergeInternals(source, subscriber, project, concurrent, onBeforeNext, expand, innerSubScheduler, additionalFinalizer) { var buffer = []; var active = 0; var index = 0; var isComplete = false; var checkComplete = function () { if (isComplete && !buffer.length && !active) { subscriber.complete(); } }; var outerNext = function (value) { return (active < concurrent ? doInnerSub(value) : buffer.push(value)); }; var doInnerSub = function (value) { expand && subscriber.next(value); active++; var innerComplete = false; innerFrom(project(value, index++)).subscribe(createOperatorSubscriber(subscriber, function (innerValue) { onBeforeNext === null || onBeforeNext === void 0 ? void 0 : onBeforeNext(innerValue); if (expand) { outerNext(innerValue); } else { subscriber.next(innerValue); } }, function () { innerComplete = true; }, undefined, function () { if (innerComplete) { try { active--; var _loop_1 = function () { var bufferedValue = buffer.shift(); if (innerSubScheduler) { executeSchedule(subscriber, innerSubScheduler, function () { return doInnerSub(bufferedValue); }); } else { doInnerSub(bufferedValue); } }; while (buffer.length && active < concurrent) { _loop_1(); } checkComplete(); } catch (err) { subscriber.error(err); } } })); }; source.subscribe(createOperatorSubscriber(subscriber, outerNext, function () { isComplete = true; checkComplete(); })); return function () { additionalFinalizer === null || additionalFinalizer === void 0 ? void 0 : additionalFinalizer(); }; } function mergeMap(project, resultSelector, concurrent) { if (concurrent === void 0) { concurrent = Infinity; } if (isFunction(resultSelector)) { return mergeMap(function (a, i) { return map(function (b, ii) { return resultSelector(a, b, i, ii); })(innerFrom(project(a, i))); }, concurrent); } else if (typeof resultSelector === "number") { concurrent = resultSelector; } return operate(function (source, subscriber) { return mergeInternals(source, subscriber, project, concurrent); }); } function mergeAll(concurrent) { if (concurrent === void 0) { concurrent = Infinity; } return mergeMap(identity, concurrent); } function concatAll() { return mergeAll(1); } function concat() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } return concatAll()(from(args, popScheduler(args))); } var nodeEventEmitterMethods = ["addListener", "removeListener"]; var eventTargetMethods = ["addEventListener", "removeEventListener"]; var jqueryMethods = ["on", "off"]; function fromEvent(target, eventName, options, resultSelector) { if (isFunction(options)) { resultSelector = options; options = undefined; } if (resultSelector) { return fromEvent(target, eventName, options).pipe(mapOneOrManyArgs(resultSelector)); } var _a = __read(isEventTarget(target) ? eventTargetMethods.map(function (methodName) { return function (handler) { return target[methodName](eventName, handler, options); }; }) : isNodeStyleEventEmitter(target) ? nodeEventEmitterMethods.map(toCommonHandlerRegistry(target, eventName)) : isJQueryStyleEventEmitter(target) ? jqueryMethods.map(toCommonHandlerRegistry(target, eventName)) : [], 2), add = _a[0], remove = _a[1]; if (!add) { if (isArrayLike(target)) { return mergeMap(function (subTarget) { return fromEvent(subTarget, eventName, options); })(innerFrom(target)); } } if (!add) { throw new TypeError("Invalid event target"); } return new Observable(function (subscriber) { var handler = function () { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } return subscriber.next(1 < args.length ? args : args[0]); }; add(handler); return function () { return remove(handler); }; }); } function toCommonHandlerRegistry(target, eventName) { return function (methodName) { return function (handler) { return target[methodName](eventName, handler); }; }; } function isNodeStyleEventEmitter(target) { return isFunction(target.addListener) && isFunction(target.removeListener); } function isJQueryStyleEventEmitter(target) { return isFunction(target.on) && isFunction(target.off); } function isEventTarget(target) { return isFunction(target.addEventListener) && isFunction(target.removeEventListener); } function timer(dueTime, intervalOrScheduler, scheduler) { if (dueTime === void 0) { dueTime = 0; } if (scheduler === void 0) { scheduler = async; } var intervalDuration = -1; if (intervalOrScheduler != null) { if (isScheduler(intervalOrScheduler)) { scheduler = intervalOrScheduler; } else { intervalDuration = intervalOrScheduler; } } return new Observable(function (subscriber) { var due = isValidDate(dueTime) ? +dueTime - scheduler.now() : dueTime; if (due < 0) { due = 0; } var n = 0; return scheduler.schedule(function () { if (!subscriber.closed) { subscriber.next(n++); if (0 <= intervalDuration) { this.schedule(undefined, intervalDuration); } else { subscriber.complete(); } } }, due); }); } function merge() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var scheduler = popScheduler(args); var concurrent = popNumber(args, Infinity); var sources = args; return !sources.length ? EMPTY$1 : sources.length === 1 ? innerFrom(sources[0]) : mergeAll(concurrent)(from(sources, scheduler)); } var isArray$4 = Array.isArray; function argsOrArgArray(args) { return args.length === 1 && isArray$4(args[0]) ? args[0] : args; } function filter(predicate, thisArg) { return operate(function (source, subscriber) { var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { return predicate.call(thisArg, value, index++) && subscriber.next(value); })); }); } function zip() { var args = []; for (var _i = 0; _i < arguments.length; _i++) { args[_i] = arguments[_i]; } var resultSelector = popResultSelector(args); var sources = argsOrArgArray(args); return sources.length ? new Observable(function (subscriber) { var buffers = sources.map(function () { return []; }); var completed = sources.map(function () { return false; }); subscriber.add(function () { buffers = completed = null; }); var _loop_1 = function (sourceIndex) { innerFrom(sources[sourceIndex]).subscribe(createOperatorSubscriber(subscriber, function (value) { buffers[sourceIndex].push(value); if (buffers.every(function (buffer) { return buffer.length; })) { var result = buffers.map(function (buffer) { return buffer.shift(); }); subscriber.next(resultSelector ? resultSelector.apply(void 0, __spreadArray([], __read(result))) : result); if (buffers.some(function (buffer, i) { return !buffer.length && completed[i]; })) { subscriber.complete(); } } }, function () { completed[sourceIndex] = true; !buffers[sourceIndex].length && subscriber.complete(); })); }; for (var sourceIndex = 0; !subscriber.closed && sourceIndex < sources.length; sourceIndex++) { _loop_1(sourceIndex); } return function () { buffers = completed = null; }; }) : EMPTY$1; } function audit(durationSelector) { return operate(function (source, subscriber) { var hasValue = false; var lastValue = null; var durationSubscriber = null; var isComplete = false; var endDuration = function () { durationSubscriber === null || durationSubscriber === void 0 ? void 0 : durationSubscriber.unsubscribe(); durationSubscriber = null; if (hasValue) { hasValue = false; var value = lastValue; lastValue = null; subscriber.next(value); } isComplete && subscriber.complete(); }; var cleanupDuration = function () { durationSubscriber = null; isComplete && subscriber.complete(); }; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; lastValue = value; if (!durationSubscriber) { innerFrom(durationSelector(value)).subscribe((durationSubscriber = createOperatorSubscriber(subscriber, endDuration, cleanupDuration))); } }, function () { isComplete = true; (!hasValue || !durationSubscriber || durationSubscriber.closed) && subscriber.complete(); })); }); } function auditTime(duration, scheduler) { if (scheduler === void 0) { scheduler = asyncScheduler; } return audit(function () { return timer(duration, scheduler); }); } function bufferCount(bufferSize, startBufferEvery) { if (startBufferEvery === void 0) { startBufferEvery = null; } startBufferEvery = startBufferEvery !== null && startBufferEvery !== void 0 ? startBufferEvery : bufferSize; return operate(function (source, subscriber) { var buffers = []; var count = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var e_1, _a, e_2, _b; var toEmit = null; if (count++ % startBufferEvery === 0) { buffers.push([]); } try { for (var buffers_1 = __values(buffers), buffers_1_1 = buffers_1.next(); !buffers_1_1.done; buffers_1_1 = buffers_1.next()) { var buffer = buffers_1_1.value; buffer.push(value); if (bufferSize <= buffer.length) { toEmit = toEmit !== null && toEmit !== void 0 ? toEmit : []; toEmit.push(buffer); } } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (buffers_1_1 && !buffers_1_1.done && (_a = buffers_1.return)) _a.call(buffers_1); } finally { if (e_1) throw e_1.error; } } if (toEmit) { try { for (var toEmit_1 = __values(toEmit), toEmit_1_1 = toEmit_1.next(); !toEmit_1_1.done; toEmit_1_1 = toEmit_1.next()) { var buffer = toEmit_1_1.value; arrRemove(buffers, buffer); subscriber.next(buffer); } } catch (e_2_1) { e_2 = { error: e_2_1 }; } finally { try { if (toEmit_1_1 && !toEmit_1_1.done && (_b = toEmit_1.return)) _b.call(toEmit_1); } finally { if (e_2) throw e_2.error; } } } }, function () { var e_3, _a; try { for (var buffers_2 = __values(buffers), buffers_2_1 = buffers_2.next(); !buffers_2_1.done; buffers_2_1 = buffers_2.next()) { var buffer = buffers_2_1.value; subscriber.next(buffer); } } catch (e_3_1) { e_3 = { error: e_3_1 }; } finally { try { if (buffers_2_1 && !buffers_2_1.done && (_a = buffers_2.return)) _a.call(buffers_2); } finally { if (e_3) throw e_3.error; } } subscriber.complete(); }, undefined, function () { buffers = null; })); }); } function bufferWhen(closingSelector) { return operate(function (source, subscriber) { var buffer = null; var closingSubscriber = null; var openBuffer = function () { closingSubscriber === null || closingSubscriber === void 0 ? void 0 : closingSubscriber.unsubscribe(); var b = buffer; buffer = []; b && subscriber.next(b); innerFrom(closingSelector()).subscribe((closingSubscriber = createOperatorSubscriber(subscriber, openBuffer, noop))); }; openBuffer(); source.subscribe(createOperatorSubscriber(subscriber, function (value) { return buffer === null || buffer === void 0 ? void 0 : buffer.push(value); }, function () { buffer && subscriber.next(buffer); subscriber.complete(); }, undefined, function () { return (buffer = closingSubscriber = null); })); }); } function catchError(selector) { return operate(function (source, subscriber) { var innerSub = null; var syncUnsub = false; var handledResult; innerSub = source.subscribe(createOperatorSubscriber(subscriber, undefined, undefined, function (err) { handledResult = innerFrom(selector(err, catchError(selector)(source))); if (innerSub) { innerSub.unsubscribe(); innerSub = null; handledResult.subscribe(subscriber); } else { syncUnsub = true; } })); if (syncUnsub) { innerSub.unsubscribe(); innerSub = null; handledResult.subscribe(subscriber); } }); } function scanInternals(accumulator, seed, hasSeed, emitOnNext, emitBeforeComplete) { return function (source, subscriber) { var hasState = hasSeed; var state = seed; var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var i = index++; state = hasState ? accumulator(state, value, i) : ((hasState = true), value); emitOnNext && subscriber.next(state); }, emitBeforeComplete && (function () { hasState && subscriber.next(state); subscriber.complete(); }))); }; } function reduce(accumulator, seed) { return operate(scanInternals(accumulator, seed, arguments.length >= 2, false, true)); } function concatMap(project, resultSelector) { return isFunction(resultSelector) ? mergeMap(project, resultSelector, 1) : mergeMap(project, 1); } function fromSubscribable(subscribable) { return new Observable(function (subscriber) { return subscribable.subscribe(subscriber); }); } var DEFAULT_CONFIG = { connector: function () { return new Subject(); }, }; function connect(selector, config) { if (config === void 0) { config = DEFAULT_CONFIG; } var connector = config.connector; return operate(function (source, subscriber) { var subject = connector(); innerFrom(selector(fromSubscribable(subject))).subscribe(subscriber); subscriber.add(source.subscribe(subject)); }); } function debounceTime(dueTime, scheduler) { if (scheduler === void 0) { scheduler = asyncScheduler; } return operate(function (source, subscriber) { var activeTask = null; var lastValue = null; var lastTime = null; var emit = function () { if (activeTask) { activeTask.unsubscribe(); activeTask = null; var value = lastValue; lastValue = null; subscriber.next(value); } }; function emitWhenIdle() { var targetTime = lastTime + dueTime; var now = scheduler.now(); if (now < targetTime) { activeTask = this.schedule(undefined, targetTime - now); subscriber.add(activeTask); return; } emit(); } source.subscribe(createOperatorSubscriber(subscriber, function (value) { lastValue = value; lastTime = scheduler.now(); if (!activeTask) { activeTask = scheduler.schedule(emitWhenIdle, dueTime); subscriber.add(activeTask); } }, function () { emit(); subscriber.complete(); }, undefined, function () { lastValue = activeTask = null; })); }); } function defaultIfEmpty(defaultValue) { return operate(function (source, subscriber) { var hasValue = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; subscriber.next(value); }, function () { if (!hasValue) { subscriber.next(defaultValue); } subscriber.complete(); })); }); } function take(count) { return count <= 0 ? function () { return EMPTY$1; } : operate(function (source, subscriber) { var seen = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { if (++seen <= count) { subscriber.next(value); if (count <= seen) { subscriber.complete(); } } })); }); } function distinctUntilChanged(comparator, keySelector) { if (keySelector === void 0) { keySelector = identity; } comparator = comparator !== null && comparator !== void 0 ? comparator : defaultCompare$3; return operate(function (source, subscriber) { var previousKey; var first = true; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var currentKey = keySelector(value); if (first || !comparator(previousKey, currentKey)) { first = false; previousKey = currentKey; subscriber.next(value); } })); }); } function defaultCompare$3(a, b) { return a === b; } function throwIfEmpty(errorFactory) { if (errorFactory === void 0) { errorFactory = defaultErrorFactory; } return operate(function (source, subscriber) { var hasValue = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; subscriber.next(value); }, function () { return (hasValue ? subscriber.complete() : subscriber.error(errorFactory())); })); }); } function defaultErrorFactory() { return new EmptyError(); } function expand(project, concurrent, scheduler) { if (concurrent === void 0) { concurrent = Infinity; } concurrent = (concurrent || 0) < 1 ? Infinity : concurrent; return operate(function (source, subscriber) { return mergeInternals(source, subscriber, project, concurrent, undefined, true, scheduler); }); } function finalize(callback) { return operate(function (source, subscriber) { try { source.subscribe(subscriber); } finally { subscriber.add(callback); } }); } function first(predicate, defaultValue) { var hasDefaultValue = arguments.length >= 2; return function (source) { return source.pipe(predicate ? filter(function (v, i) { return predicate(v, i, source); }) : identity, take(1), hasDefaultValue ? defaultIfEmpty(defaultValue) : throwIfEmpty(function () { return new EmptyError(); })); }; } function takeLast(count) { return count <= 0 ? function () { return EMPTY$1; } : operate(function (source, subscriber) { var buffer = []; source.subscribe(createOperatorSubscriber(subscriber, function (value) { buffer.push(value); count < buffer.length && buffer.shift(); }, function () { var e_1, _a; try { for (var buffer_1 = __values(buffer), buffer_1_1 = buffer_1.next(); !buffer_1_1.done; buffer_1_1 = buffer_1.next()) { var value = buffer_1_1.value; subscriber.next(value); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (buffer_1_1 && !buffer_1_1.done && (_a = buffer_1.return)) _a.call(buffer_1); } finally { if (e_1) throw e_1.error; } } subscriber.complete(); }, undefined, function () { buffer = null; })); }); } function last(predicate, defaultValue) { var hasDefaultValue = arguments.length >= 2; return function (source) { return source.pipe(predicate ? filter(function (v, i) { return predicate(v, i, source); }) : identity, takeLast(1), hasDefaultValue ? defaultIfEmpty(defaultValue) : throwIfEmpty(function () { return new EmptyError(); })); }; } function multicast(subjectOrSubjectFactory, selector) { var subjectFactory = isFunction(subjectOrSubjectFactory) ? subjectOrSubjectFactory : function () { return subjectOrSubjectFactory; }; if (isFunction(selector)) { return connect(selector, { connector: subjectFactory, }); } return function (source) { return new ConnectableObservable(source, subjectFactory); }; } function pairwise() { return operate(function (source, subscriber) { var prev; var hasPrev = false; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var p = prev; prev = value; hasPrev && subscriber.next([p, value]); hasPrev = true; })); }); } function pluck() { var properties = []; for (var _i = 0; _i < arguments.length; _i++) { properties[_i] = arguments[_i]; } var length = properties.length; if (length === 0) { throw new Error("list of properties cannot be empty."); } return map(function (x) { var currentProp = x; for (var i = 0; i < length; i++) { var p = currentProp === null || currentProp === void 0 ? void 0 : currentProp[properties[i]]; if (typeof p !== "undefined") { currentProp = p; } else { return undefined; } } return currentProp; }); } function publish(selector) { return selector ? function (source) { return connect(selector)(source); } : function (source) { return multicast(new Subject())(source); }; } function publishReplay(bufferSize, windowTime, selectorOrScheduler, timestampProvider) { if (selectorOrScheduler && !isFunction(selectorOrScheduler)) { timestampProvider = selectorOrScheduler; } var selector = isFunction(selectorOrScheduler) ? selectorOrScheduler : undefined; return function (source) { return multicast(new ReplaySubject(bufferSize, windowTime, timestampProvider), selector)(source); }; } function retry(configOrCount) { if (configOrCount === void 0) { configOrCount = Infinity; } var config; if (configOrCount && typeof configOrCount === "object") { config = configOrCount; } else { config = { count: configOrCount, }; } var _a = config.count, count = _a === void 0 ? Infinity : _a, delay = config.delay, _b = config.resetOnSuccess, resetOnSuccess = _b === void 0 ? false : _b; return count <= 0 ? identity : operate(function (source, subscriber) { var soFar = 0; var innerSub; var subscribeForRetry = function () { var syncUnsub = false; innerSub = source.subscribe(createOperatorSubscriber(subscriber, function (value) { if (resetOnSuccess) { soFar = 0; } subscriber.next(value); }, undefined, function (err) { if (soFar++ < count) { var resub_1 = function () { if (innerSub) { innerSub.unsubscribe(); innerSub = null; subscribeForRetry(); } else { syncUnsub = true; } }; if (delay != null) { var notifier = typeof delay === "number" ? timer(delay) : innerFrom(delay(err, soFar)); var notifierSubscriber_1 = createOperatorSubscriber(subscriber, function () { notifierSubscriber_1.unsubscribe(); resub_1(); }, function () { subscriber.complete(); }); notifier.subscribe(notifierSubscriber_1); } else { resub_1(); } } else { subscriber.error(err); } })); if (syncUnsub) { innerSub.unsubscribe(); innerSub = null; subscribeForRetry(); } }; subscribeForRetry(); }); } function sample(notifier) { return operate(function (source, subscriber) { var hasValue = false; var lastValue = null; source.subscribe(createOperatorSubscriber(subscriber, function (value) { hasValue = true; lastValue = value; })); innerFrom(notifier).subscribe(createOperatorSubscriber(subscriber, function () { if (hasValue) { hasValue = false; var value = lastValue; lastValue = null; subscriber.next(value); } }, noop)); }); } function scan(accumulator, seed) { return operate(scanInternals(accumulator, seed, arguments.length >= 2, true)); } function share(options) { if (options === void 0) { options = {}; } var _a = options.connector, connector = _a === void 0 ? function () { return new Subject(); } : _a, _b = options.resetOnError, resetOnError = _b === void 0 ? true : _b, _c = options.resetOnComplete, resetOnComplete = _c === void 0 ? true : _c, _d = options.resetOnRefCountZero, resetOnRefCountZero = _d === void 0 ? true : _d; return function (wrapperSource) { var connection; var resetConnection; var subject; var refCount = 0; var hasCompleted = false; var hasErrored = false; var cancelReset = function () { resetConnection === null || resetConnection === void 0 ? void 0 : resetConnection.unsubscribe(); resetConnection = undefined; }; var reset = function () { cancelReset(); connection = subject = undefined; hasCompleted = hasErrored = false; }; var resetAndUnsubscribe = function () { var conn = connection; reset(); conn === null || conn === void 0 ? void 0 : conn.unsubscribe(); }; return operate(function (source, subscriber) { refCount++; if (!hasErrored && !hasCompleted) { cancelReset(); } var dest = (subject = subject !== null && subject !== void 0 ? subject : connector()); subscriber.add(function () { refCount--; if (refCount === 0 && !hasErrored && !hasCompleted) { resetConnection = handleReset(resetAndUnsubscribe, resetOnRefCountZero); } }); dest.subscribe(subscriber); if (!connection && refCount > 0) { connection = new SafeSubscriber({ next: function (value) { return dest.next(value); }, error: function (err) { hasErrored = true; cancelReset(); resetConnection = handleReset(reset, resetOnError, err); dest.error(err); }, complete: function () { hasCompleted = true; cancelReset(); resetConnection = handleReset(reset, resetOnComplete); dest.complete(); }, }); innerFrom(source).subscribe(connection); } })(wrapperSource); }; } function handleReset(reset, on) { var args = []; for (var _i = 2; _i < arguments.length; _i++) { args[_i - 2] = arguments[_i]; } if (on === true) { reset(); return; } if (on === false) { return; } var onSubscriber = new SafeSubscriber({ next: function () { onSubscriber.unsubscribe(); reset(); }, }); return innerFrom(on.apply(void 0, __spreadArray([], __read(args)))).subscribe(onSubscriber); } function skip(count) { return filter(function (_, index) { return count <= index; }); } function skipWhile(predicate) { return operate(function (source, subscriber) { var taking = false; var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { return (taking || (taking = !predicate(value, index++))) && subscriber.next(value); })); }); } function startWith() { var values = []; for (var _i = 0; _i < arguments.length; _i++) { values[_i] = arguments[_i]; } var scheduler = popScheduler(values); return operate(function (source, subscriber) { (scheduler ? concat(values, source, scheduler) : concat(values, source)).subscribe(subscriber); }); } function switchMap(project, resultSelector) { return operate(function (source, subscriber) { var innerSubscriber = null; var index = 0; var isComplete = false; var checkComplete = function () { return isComplete && !innerSubscriber && subscriber.complete(); }; source.subscribe(createOperatorSubscriber(subscriber, function (value) { innerSubscriber === null || innerSubscriber === void 0 ? void 0 : innerSubscriber.unsubscribe(); var innerIndex = 0; var outerIndex = index++; innerFrom(project(value, outerIndex)).subscribe((innerSubscriber = createOperatorSubscriber(subscriber, function (innerValue) { return subscriber.next(resultSelector ? resultSelector(value, innerValue, outerIndex, innerIndex++) : innerValue); }, function () { innerSubscriber = null; checkComplete(); }))); }, function () { isComplete = true; checkComplete(); })); }); } function takeUntil(notifier) { return operate(function (source, subscriber) { innerFrom(notifier).subscribe(createOperatorSubscriber(subscriber, function () { return subscriber.complete(); }, noop)); !subscriber.closed && source.subscribe(subscriber); }); } function takeWhile(predicate, inclusive) { if (inclusive === void 0) { inclusive = false; } return operate(function (source, subscriber) { var index = 0; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var result = predicate(value, index++); (result || inclusive) && subscriber.next(value); !result && subscriber.complete(); })); }); } function tap(observerOrNext, error, complete) { var tapObserver = isFunction(observerOrNext) || error || complete ? { next: observerOrNext, error: error, complete: complete } : observerOrNext; return tapObserver ? operate(function (source, subscriber) { var _a; (_a = tapObserver.subscribe) === null || _a === void 0 ? void 0 : _a.call(tapObserver); var isUnsub = true; source.subscribe(createOperatorSubscriber(subscriber, function (value) { var _a; (_a = tapObserver.next) === null || _a === void 0 ? void 0 : _a.call(tapObserver, value); subscriber.next(value); }, function () { var _a; isUnsub = false; (_a = tapObserver.complete) === null || _a === void 0 ? void 0 : _a.call(tapObserver); subscriber.complete(); }, function (err) { var _a; isUnsub = false; (_a = tapObserver.error) === null || _a === void 0 ? void 0 : _a.call(tapObserver, err); subscriber.error(err); }, function () { var _a, _b; if (isUnsub) { (_a = tapObserver.unsubscribe) === null || _a === void 0 ? void 0 : _a.call(tapObserver); } (_b = tapObserver.finalize) === null || _b === void 0 ? void 0 : _b.call(tapObserver); })); }) : identity; } function withLatestFrom() { var inputs = []; for (var _i = 0; _i < arguments.length; _i++) { inputs[_i] = arguments[_i]; } var project = popResultSelector(inputs); return operate(function (source, subscriber) { var len = inputs.length; var otherValues = new Array(len); var hasValue = inputs.map(function () { return false; }); var ready = false; var _loop_1 = function (i) { innerFrom(inputs[i]).subscribe(createOperatorSubscriber(subscriber, function (value) { otherValues[i] = value; if (!ready && !hasValue[i]) { hasValue[i] = true; (ready = hasValue.every(identity)) && (hasValue = null); } }, noop)); }; for (var i = 0; i < len; i++) { _loop_1(i); } source.subscribe(createOperatorSubscriber(subscriber, function (value) { if (ready) { var values = __spreadArray([value], __read(otherValues)); subscriber.next(project ? project.apply(void 0, __spreadArray([], __read(values))) : values); } })); }); } /** * @class Filter * * @classdesc Represents a class for creating image filters. Implementation and * definitions based on https://github.com/mapbox/feature-filter. */ class FilterCreator { /** * Create a filter from a filter expression. * * @description The following filters are supported: * * Comparison * `==` * `!=` * `<` * `<=` * `>` * `>=` * * Set membership * `in` * `!in` * * Combining * `all` * * @param {FilterExpression} filter - Comparison, set membership or combinding filter * expression. * @returns {FilterFunction} Function taking a image and returning a boolean that * indicates whether the image passed the test or not. */ createFilter(filter) { return new Function("node", "return " + this._compile(filter) + ";"); } _compile(filter) { if (filter == null || filter.length <= 1) { return "true"; } const operator = filter[0]; const operation = operator === "==" ? this._compileComparisonOp("===", filter[1], filter[2], false) : operator === "!=" ? this._compileComparisonOp("!==", filter[1], filter[2], false) : operator === ">" || operator === ">=" || operator === "<" || operator === "<=" ? this._compileComparisonOp(operator, filter[1], filter[2], true) : operator === "in" ? this._compileInOp(filter[1], filter.slice(2)) : operator === "!in" ? this._compileNegation(this._compileInOp(filter[1], filter.slice(2))) : operator === "all" ? this._compileLogicalOp(filter.slice(1), "&&") : "true"; return "(" + operation + ")"; } _compare(a, b) { return a < b ? -1 : a > b ? 1 : 0; } _compileComparisonOp(operator, property, value, checkType) { const left = this._compilePropertyReference(property); const right = JSON.stringify(value); return (checkType ? "typeof " + left + "===typeof " + right + "&&" : "") + left + operator + right; } _compileInOp(property, values) { const compare = this._compare; const left = JSON.stringify(values.sort(compare)); const right = this._compilePropertyReference(property); return left + ".indexOf(" + right + ")!==-1"; } _compileLogicalOp(filters, operator) { const compile = this._compile.bind(this); return filters.map(compile).join(operator); } _compileNegation(expression) { return "!(" + expression + ")"; } _compilePropertyReference(property) { return "node[" + JSON.stringify(property) + "]"; } } /** * @license * Copyright 2010-2023 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = "152"; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const RED_RGTC1_Format = 36283; const SIGNED_RED_RGTC1_Format = 36284; const RED_GREEN_RGTC2_Format = 36285; const SIGNED_RED_GREEN_RGTC2_Format = 36286; /** @deprecated Use LinearSRGBColorSpace or NoColorSpace in three.js r152+. */ const LinearEncoding = 3000; /** @deprecated Use SRGBColorSpace in three.js r152+. */ const sRGBEncoding = 3001; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; // Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. const NoColorSpace = ""; const SRGBColorSpace = "srgb"; const LinearSRGBColorSpace = "srgb-linear"; const DisplayP3ColorSpace = "display-p3"; const KeepStencilOp = 7680; const AlwaysStencilFunc = 519; const StaticDrawUsage = 35044; const GLSL3 = "300 es"; const _SRGBAFormat = 1035; // fallback for WebGL 1 /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; const listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } } hasEventListener( type, listener ) { if ( this._listeners === undefined ) return false; const listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; } removeEventListener( type, listener ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { const index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } } dispatchEvent( event ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice( 0 ); for ( let i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } event.target = null; } } } const _lut = [ "00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "0a", "0b", "0c", "0d", "0e", "0f", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "1a", "1b", "1c", "1d", "1e", "1f", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "2a", "2b", "2c", "2d", "2e", "2f", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "3a", "3b", "3c", "3d", "3e", "3f", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "4a", "4b", "4c", "4d", "4e", "4f", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "5a", "5b", "5c", "5d", "5e", "5f", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "6a", "6b", "6c", "6d", "6e", "6f", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "7a", "7b", "7c", "7d", "7e", "7f", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "8a", "8b", "8c", "8d", "8e", "8f", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "9a", "9b", "9c", "9d", "9e", "9f", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "aa", "ab", "ac", "ad", "ae", "af", "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8", "b9", "ba", "bb", "bc", "bd", "be", "bf", "c0", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "ca", "cb", "cc", "cd", "ce", "cf", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "da", "db", "dc", "dd", "de", "df", "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9", "ea", "eb", "ec", "ed", "ee", "ef", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "fa", "fb", "fc", "fd", "fe", "ff" ]; let _seed = 1234567; const DEG2RAD$1 = Math.PI / 180; const RAD2DEG$1 = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + "-" + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + "-" + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + "-" + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + "-" + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase(); } function clamp$1( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } // compute euclidean modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo( n, m ) { return ( ( n % m ) + m ) % m; } // Linear mapping from range