-----
StdlibWebBloksActions",["WebBloksAnimatedAddOnCompleteListener","WebBloksAnimatedBuild","WebBloksAnimatedCancel","WebBloksAnimatedCancelToken","WebBloksAnimatedCreate","WebBloksAnimatedCreateColor","WebBloksAnimatedCreateCubicBezier","WebBloksAnimatedCreateDimension","WebBloksAnimatedDestroy","WebBloksAnimatedGetCurrentColorValue","WebBloksAnimatedGetCurrentDimensionValue","WebBloksAnimatedGetCurrentPlayTime","WebBloksAnimatedGetCurrentValue","WebBloksAnimatedGetTotalDuration","WebBloksAnimatedIsInitialized","WebBloksAnimatedLoop","WebBloksAnimatedParallel","WebBloksAnimatedPause","WebBloksAnimatedResume","WebBloksAnimatedSequence","WebBloksAnimatedSetCurrentPlayTime","WebBloksAnimatedStagger","WebBloksAnimatedStart","WebBloksAnimatedStartToken","WebBloksCollectionSetIndex","WebBloksDummy","WebBloksScreenClose","WebBloksScreenOpen","WebBloksTooltipHide","WebBloksTooltipShow"],(function(a,b,c,d,e,f,g){a={"bk.action.animated.AddOnCompleteListener":c("WebBloksAnimatedAddOnCompleteListener"),"bk.action.animated.Build":c("WebBloksAnimatedBuild"),"bk.action.animated.Cancel":c("WebBloksAnimatedCancel"),"bk.action.animated.CancelToken":c("WebBloksAnimatedCancelToken"),"bk.action.animated.CancelWithToken":c("WebBloksDummy"),"bk.action.animated.Create":c("WebBloksAnimatedCreate"),"bk.action.animated.CreateColor":c("WebBloksAnimatedCreateColor"),"bk.action.animated.CreateDimension":c("WebBloksAnimatedCreateDimension"),"bk.action.animated.Destroy":c("WebBloksAnimatedDestroy"),"bk.action.animated.GetCurrentColorValue":c("WebBloksAnimatedGetCurrentColorValue"),"bk.action.animated.GetCurrentDimensionValue":c("WebBloksAnimatedGetCurrentDimensionValue"),"bk.action.animated.GetCurrentPlayTime":c("WebBloksAnimatedGetCurrentPlayTime"),"bk.action.animated.GetCurrentValue":c("WebBloksAnimatedGetCurrentValue"),"bk.action.animated.GetTotalDuration":c("WebBloksAnimatedGetTotalDuration"),"bk.action.animated.IsInitialized":c("WebBloksAnimatedIsInitialized"),"bk.action.animated.Loop":c("WebBloksAnimatedLoop"),"bk.action.animated.Parallel":c("WebBloksAnimatedParallel"),"bk.action.animated.Pause":c("WebBloksAnimatedPause"),"bk.action.animated.Resume":c("WebBloksAnimatedResume"),"bk.action.animated.Sequence":c("WebBloksAnimatedSequence"),"bk.action.animated.SetCurrentPlayTime":c("WebBloksAnimatedSetCurrentPlayTime"),"bk.action.animated.Stagger":c("WebBloksAnimatedStagger"),"bk.action.animated.Start":c("WebBloksAnimatedStart"),"bk.action.animated.StartToken":c("WebBloksAnimatedStartToken"),"bk.action.animated.StartWithToken":c("WebBloksDummy"),"bk.action.animated.easing.CreateCubicBezier":c("WebBloksAnimatedCreateCubicBezier"),"bk.action.collection.SetIndex":c("WebBloksCollectionSetIndex"),"bk.action.screen.Close":c("WebBloksScreenClose"),"bk.action.screen.Open":c("WebBloksScreenOpen"),"bk.action.tooltip.Hide":c("WebBloksTooltipHide"),"bk.action.tooltip.Show":c("WebBloksTooltipShow")};g.ACTIONS=a}),98);
-----
FDSProgressRingUtils",["ix"],(function(a,b,c,d,e,f,g,h){"use strict";function a(a,b,c,d){function e(a,b){return 1-3*b+3*a}function f(a,b){return 3*b-6*a}function g(a){return 3*a}function h(a,b,c){return((e(b,c)*a+f(b,c))*a+g(b))*a}function i(a,b,c){return 3*e(b,c)*a*a+2*f(b,c)*a+g(b)}function j(b){var d=b;for(var e=0;e<4;++e){var f=i(d,a,c);if(f===0)return d;var g=h(d,a,c)-b;d-=g/f}return d}return function(e){return a===b&&c===d?e:h(j(e),b,d)}}function b(a,b,c){switch(b){case"12":switch(c){case"dark":switch(a){case"blue":return h("1876411");case"disabled":return h("1876443");case"dark":return h("1876427");case"light":return h("1876427");default:return h("1876427")}case"light":switch(a){case"blue":return h("1876419");case"disabled":return h("1876451");case"dark":return h("1876435");case"light":return h("1876427");default:return h("1876435")}default:return h("1876435")}case"16":switch(c){case"dark":switch(a){case"blue":return h("1876412");case"disabled":return h("1876444");case"dark":return h("1876428");case"light":return h("1876428");default:return h("1876428")}case"light":switch(a){case"blue":return h("1876420");case"disabled":return h("1876452");case"dark":return h("1876436");case"light":return h("1876428");default:return h("1876436")}default:return h("1876436")}case"20":switch(c){case"dark":switch(a){case"blue":return h("1876413");case"disabled":return h("1876445");case"dark":return h("1876429");case"light":return h("1876429");default:return h("1876429")}case"light":switch(a){case"blue":return h("1876421");case"disabled":return h("1876453");case"dark":return h("1876437");case"light":return h("1876429");default:return h("1876437")}default:return h("1876437")}case"24":switch(c){case"dark":switch(a){case"blue":return h("1876414");case"disabled":return h("1876446");case"dark":return h("1876430");case"light":return h("1876430");default:return h("1876430")}case"light":switch(a){case"blue":return h("1876422");case"disabled":return h("1876454");case"dark":return h("1876438");case"light":return h("1876430");default:return h("1876438")}default:return h("1876438")}case"32":switch(c){case"dark":switch(a){case"blue":return h("1876415");case"disabled":return h("1876447");case"dark":return h("1876431");case"light":return h("1876431");default:return h("1876431")}case"light":switch(a){case"blue":return h("1876423");case"disabled":return h("1876455");case"dark":return h("1876439");case"light":return h("1876431");default:return h("1876439")}default:return h("1876439")}case"48":switch(c){case"dark":switch(a){case"blue":return h("1876416");case"disabled":return h("1876448");case"dark":return h("1876432");case"light":return h("1876432");default:return h("1876432")}case"light":switch(a){case"blue":return h("1876424");case"disabled":return h("1876456");case"dark":return h("1876440");case"light":return h("1876432");default:return h("1876440")}default:return h("1876440")}case"60":switch(c){case"dark":switch(a){case"blue":return h("1940508");case"disabled":return h("1940512");case"dark":return h("1940510");case"light":return h("1940510");default:return h("1940510")}case"light":switch(a){case"blue":return h("1940509");case"disabled":return h("1940513");case"dark":return h("1940511");case"light":return h("1940510");default:return h("1940511")}default:return h("1940511")}case"72":switch(c){case"dark":switch(a){case"blue":return h("1876418");case"disabled":return h("1876450");case"dark":return h("1876434");case"light":return h("1876434");default:return h("1876434")}case"light":switch(a){case"blue":return h("1876426");case"disabled":return h("1876458");case"dark":return h("1876442");case"light":return h("1876434");default:return h("1876442")}default:return h("1876442")}default:return h("1876439")}}function c(a){switch(a){case"dark":return{backgroundColor:"var(--progress-ring-neutral-background)",foregroundColor:"var(--progress-ring-neutral-foreground)"};case"light":return{backgroundColor:"var(--progress-ring-on-media-background)",foregroundColor:"var(--progress-ring-on-media-foreground)"};case"blue":return{backgroundColor:"var(--progress-ring-blue-background)",foregroundColor:"var(--progress-ring-blue-foreground)"};case"disabled":return{backgroundColor:"var(--progress-ring-disabled-background)",foregroundColor:"var(--progress-ring-disabled-foreground)"};default:return{backgroundColor:"var(--progress-ring-neutral-background)",foregroundColor:"var(--progress-ring-neutral-foreground)"}}}g.getCubicBezierPercentageFunc=a;g.getRingGifUrl=b;g.getRingColor=c}),98);/*FB_PKG_DELIM*/
-----
konva-7.2.3",[],(function(a,b,c,d,e,f){"use strict";var g={},h={exports:g};function i(){Object.defineProperty(g,"__esModule",{value:!0});g._registerNode=g._NODES_REGISTRY=g.Konva=g.glob=g._parseUA=void 0;var b=Math.PI/180;function c(){return typeof window!=="undefined"&&({}.toString.call(window)==="[object Window]"||{}.toString.call(window)==="[object global]")}var d=function(a){var b=a.indexOf("msie ");if(b>0)return parseInt(a.substring(b+5,a.indexOf(".",b)),10);b=a.indexOf("trident/");if(b>0){b=a.indexOf("rv:");return parseInt(a.substring(b+3,a.indexOf(".",b)),10)}b=a.indexOf("edge/");return b>0?parseInt(a.substring(b+5,a.indexOf(".",b)),10):!1},e=function(a){var b=a.toLowerCase(),c=/(chrome)[ /]([w.]+)/.exec(b)||/(webkit)[ /]([w.]+)/.exec(b)||/(opera)(?:.*version|)[ /]([w.]+)/.exec(b)||/(msie) ([w.]+)/.exec(b)||b.indexOf("compatible")<0&&/(mozilla)(?:.*? rv:([w.]+)|)/.exec(b)||[],e=!!a.match(/Android|BlackBerry|iPhone|iPad|iPod|Opera Mini|IEMobile/i);a=!!a.match(/IEMobile/i);return{browser:c[1]||"",version:c[2]||"0",isIE:d(b),mobile:e,ieMobile:a}};g._parseUA=e;g.glob=typeof a!=="undefined"?a:typeof window!=="undefined"?window:typeof WorkerGlobalScope!=="undefined"?self:{};g.Konva={_global:g.glob,version:"7.2.3",isBrowser:c(),isUnminified:/param/.test(function(a){}.toString()),dblClickWindow:400,getAngle:function(a){return g.Konva.angleDeg?a*b:a},enableTrace:!1,_pointerEventsEnabled:!1,hitOnDragEnabled:!1,captureTouchEventsEnabled:!1,listenClickTap:!1,inDblClickWindow:!1,pixelRatio:void 0,dragDistance:3,angleDeg:!0,showWarnings:!0,dragButtons:[0,1],isDragging:function(){return g.Konva.DD.isDragging},isDragReady:function(){return!!g.Konva.DD.node},UA:g._parseUA(g.glob.navigator&&g.glob.navigator.userAgent||""),document:g.glob.document,_injectGlobal:function(a){g.glob.Konva=a},_parseUA:g._parseUA};g._NODES_REGISTRY={};e=function(a){g._NODES_REGISTRY[a.prototype.getClassName()]=a,g.Konva[a.prototype.getClassName()]=a};g._registerNode=e}var j=!1;function k(){j||(j=!0,i());return h.exports}var l={},m={exports:l};function n(){Object.defineProperty(l,"__esModule",{value:!0});l.Util=l.Transform=l.Collection=void 0;var a=k(),b=function(){function a(){}a.toCollection=function(b){var c=new a(),d=b.length,e;for(e=0;e
i?h:i,n=h>i?1:h/i;i=h>i?i/h:1;a.translate(e,g);a.rotate(l);a.scale(n,i);a.arc(0,0,m,j,j+k,1-f);a.scale(1/n,1/i);a.rotate(-l);a.translate(-e,-g);break;case"z":c=!0;a.closePath();break}}!c&&!this.hasFill()?a.strokeShape(this):a.fillStrokeShape(this)};c.prototype.getSelfRect=function(){var a=[];this.dataArray.forEach(function(b){if(b.command==="A"){var d=b.points[4],e=b.points[5],f=b.points[4]+e,g=Math.PI/180;Math.abs(d-f)f;e-=g){var h=c.getPointOnEllipticalArc(b.points[0],b.points[1],b.points[2],b.points[3],e,0);a.push(h.x,h.y)}else for(e=d+g;e this.dataArray[b].pathLength)a-=this.dataArray[b].pathLength,++b;if(b===d){d=this.dataArray[b-1].points.slice(-2);return{x:d[0],y:d[1]}}if(a<.01){d=this.dataArray[b].points.slice(0,2);return{x:d[0],y:d[1]}}d=this.dataArray[b];b=d.points;switch(d.command){case"L":return c.getPointOnLine(a,d.start.x,d.start.y,b[0],b[1]);case"C":return c.getPointOnCubicBezier(a/d.pathLength,d.start.x,d.start.y,b[0],b[1],b[2],b[3],b[4],b[5]);case"Q":return c.getPointOnQuadraticBezier(a/d.pathLength,d.start.x,d.start.y,b[0],b[1],b[2],b[3]);case"A":var e=b[0],f=b[1],g=b[2],h=b[3],i=b[4],j=b[5];b=b[6];i+=j*a/d.pathLength;return c.getPointOnEllipticalArc(e,f,g,h,i,b)}return null};c.getLineLength=function(a,b,c,d){return Math.sqrt((c-a)*(c-a)+(d-b)*(d-b))};c.getPointOnLine=function(a,b,c,d,e,f,g){f===void 0&&(f=b);g===void 0&&(g=c);var h=(e-c)/(d-b+1e-8),i=Math.sqrt(a*a/(1+h*h));d0){if(isNaN(h[0]))break;l=null;i=[];k=e;var m=f,n,o,p,q;switch(j){case"l":e+=h.shift();f+=h.shift();l="L";i.push(e,f);break;case"L":e=h.shift();f=h.shift();i.push(e,f);break;case"m":var r=h.shift(),s=h.shift();e+=r;f+=s;l="M";if(a.length>2&&a[a.length-1].command==="z")for(var t=a.length-2;t>=0;t--)if(a[t].command==="M"){e=a[t].points[0]+r;f=a[t].points[1]+s;break}i.push(e,f);j="l";break;case"M":e=h.shift();f=h.shift();l="M";i.push(e,f);j="L";break;case"h":e+=h.shift();l="L";i.push(e,f);break;case"H":e=h.shift();l="L";i.push(e,f);break;case"v":f+=h.shift();l="L";i.push(e,f);break;case"V":f=h.shift();l="L";i.push(e,f);break;case"C":i.push(h.shift(),h.shift(),h.shift(),h.shift());e=h.shift();f=h.shift();i.push(e,f);break;case"c":i.push(e+h.shift(),f+h.shift(),e+h.shift(),f+h.shift());e+=h.shift();f+=h.shift();l="C";i.push(e,f);break;case"S":r=e;s=f;t=a[a.length-1];t.command==="C"&&(r=e+(e-t.points[2]),s=f+(f-t.points[3]));i.push(r,s,h.shift(),h.shift());e=h.shift();f=h.shift();l="C";i.push(e,f);break;case"s":r=e;s=f;t=a[a.length-1];t.command==="C"&&(r=e+(e-t.points[2]),s=f+(f-t.points[3]));i.push(r,s,e+h.shift(),f+h.shift());e+=h.shift();f+=h.shift();l="C";i.push(e,f);break;case"Q":i.push(h.shift(),h.shift());e=h.shift();f=h.shift();i.push(e,f);break;case"q":i.push(e+h.shift(),f+h.shift());e+=h.shift();f+=h.shift();l="Q";i.push(e,f);break;case"T":r=e;s=f;t=a[a.length-1];t.command==="Q"&&(r=e+(e-t.points[0]),s=f+(f-t.points[1]));e=h.shift();f=h.shift();l="Q";i.push(r,s,e,f);break;case"t":r=e;s=f;t=a[a.length-1];t.command==="Q"&&(r=e+(e-t.points[0]),s=f+(f-t.points[1]));e+=h.shift();f+=h.shift();l="Q";i.push(r,s,e,f);break;case"A":t=h.shift();r=h.shift();s=h.shift();n=h.shift();o=h.shift();p=e;q=f;e=h.shift();f=h.shift();l="A";i=this.convertEndpointToCenterParameterization(p,q,e,f,n,o,t,r,s);break;case"a":t=h.shift();r=h.shift();s=h.shift();n=h.shift();o=h.shift();p=e;q=f;e+=h.shift();f+=h.shift();l="A";i=this.convertEndpointToCenterParameterization(p,q,e,f,n,o,t,r,s);break}a.push({command:l||j,points:i,start:{x:k,y:m},pathLength:this.calcLength(k,m,l||j,i)})}(j==="z"||j==="Z")&&a.push({command:"z",points:[],start:void 0,pathLength:0})}return a};c.calcLength=function(a,b,d,e){var f,g,h,i=c;switch(d){case"L":return i.getLineLength(a,b,e[0],e[1]);case"C":d=0;f=i.getPointOnCubicBezier(0,a,b,e[0],e[1],e[2],e[3],e[4],e[5]);for(h=.01;h<=1;h+=.01)g=i.getPointOnCubicBezier(h,a,b,e[0],e[1],e[2],e[3],e[4],e[5]),d+=i.getLineLength(f.x,f.y,g.x,g.y),f=g;return d;case"Q":d=0;f=i.getPointOnQuadraticBezier(0,a,b,e[0],e[1],e[2],e[3]);for(h=.01;h<=1;h+=.01)g=i.getPointOnQuadraticBezier(h,a,b,e[0],e[1],e[2],e[3]),d+=i.getLineLength(f.x,f.y,g.x,g.y),f=g;return d;case"A":d=0;a=e[4];b=e[5];var j=e[4]+b,k=Math.PI/180;Math.abs(a-j) j;h-=k)g=i.getPointOnEllipticalArc(e[0],e[1],e[2],e[3],h,0),d+=i.getLineLength(f.x,f.y,g.x,g.y),f=g;else for(h=a+k;h 1&&(g*=Math.sqrt(l),h*=Math.sqrt(l));l=Math.sqrt((g*g*(h*h)-g*g*(k*k)-h*h*(j*j))/(g*g*(k*k)+h*h*(j*j)));e===f&&(l*=-1);isNaN(l)&&(l=0);e=l*g*k/h;l=l*-h*j/g;a=(a+c)/2+Math.cos(i)*e-Math.sin(i)*l;c=(b+d)/2+Math.sin(i)*e+Math.cos(i)*l;var m=function(a){return Math.sqrt(a[0]*a[0]+a[1]*a[1])},n=function(a,b){return(a[0]*b[0]+a[1]*b[1])/(m(a)*m(b))};b=function(a,b){return(a[0]*b[1]=1&&(e=0);f===0&&e>0&&(e=e-2*Math.PI);f===1&&e<0&&(e=e+2*Math.PI);return[a,c,g,h,d,e,i,f]};return c}(d.Shape);Ab.Path=d;d.prototype.className="Path";d.prototype._attrsAffectingSize=["data"];e._registerNode(d);c.Factory.addGetterSetter(d,"data");b.Collection.mapMethods(d)}var Db=!1;function Eb(){Db||(Db=!0,Cb());return Bb.exports}var Fb={},Gb={exports:Fb};function Hb(){var a=this&&this.__extends||function(){var a=function(b,c){a=Object.setPrototypeOf||{__proto__:[]}instanceof Array&&function(a,b){a.__proto__=b}||function(a,b){for(var c in b)Object.prototype.hasOwnProperty.call(b,c)&&(a[c]=b[c])};return a(b,c)};return function(b,c){a(b,c);function d(){this.constructor=b}b.prototype=c===null?Object.create(c):(d.prototype=c.prototype,new d())}}();Object.defineProperty(Fb,"__esModule",{value:!0});Fb.Rect=void 0;var b=p(),c=z(),d=X(),e=k(),f=u();d=function(b){a(c,b);function c(){return b!==null&&b.apply(this,arguments)||this}c.prototype._sceneFunc=function(a){var b=this.cornerRadius(),c=this.width(),d=this.height();a.beginPath();if(!b)a.rect(0,0,c,d);else{var e=0,f=0,g=0,h=0;typeof b==="number"?e=f=g=h=Math.min(b,c/2,d/2):(e=Math.min(b[0]||0,c/2,d/2),f=Math.min(b[1]||0,c/2,d/2),h=Math.min(b[2]||0,c/2,d/2),g=Math.min(b[3]||0,c/2,d/2));a.moveTo(e,0);a.lineTo(c-f,0);a.arc(c-f,f,f,Math.PI*3/2,0,!1);a.lineTo(c,d-h);a.arc(c-h,d-h,h,0,Math.PI/2,!1);a.lineTo(g,d);a.arc(g,d-g,g,Math.PI/2,Math.PI,!1);a.lineTo(0,e);a.arc(e,e,e,Math.PI,Math.PI*3/2,!1)}a.closePath();a.fillStrokeShape(this)};return c}(d.Shape);Fb.Rect=d;d.prototype.className="Rect";e._registerNode(d);c.Factory.addGetterSetter(d,"cornerRadius",0,f.getNumberOrArrayOfNumbersValidator(4));b.Collection.mapMethods(d)}var Ib=!1;function Jb(){Ib||(Ib=!0,Hb());return Gb.exports}var Kb={},Lb={exports:Kb};function Mb(){var a=this&&this.__extends||function(){var a=function(b,c){a=Object.setPrototypeOf||{__proto__:[]}instanceof Array&&function(a,b){a.__proto__=b}||function(a,b){for(var c in b)Object.prototype.hasOwnProperty.call(b,c)&&(a[c]=b[c])};return a(b,c)};return function(b,c){a(b,c);function d(){this.constructor=b}b.prototype=c===null?Object.create(c):(d.prototype=c.prototype,new d())}}();Object.defineProperty(Kb,"__esModule",{value:!0});Kb.RegularPolygon=void 0;var b=p(),c=z(),d=X(),e=u(),f=k();d=function(b){a(c,b);function c(){return b!==null&&b.apply(this,arguments)||this}c.prototype._sceneFunc=function(a){var b=this._getPoints();a.beginPath();a.moveTo(b[0].x,b[0].y);for(var c=1;c =0,c=a.indexOf(""")>=0||a.indexOf(""")>=0;b&&!c&&(a="""+a+""");return a}).join(", ")}var J;function K(){if(J)return J;J=b.Util.createCanvasElement().getContext(n);return J}function L(a){a.fillText(this._partialText,this._partialTextX,this._partialTextY)}function M(a){a.strokeText(this._partialText,this._partialTextX,this._partialTextY)}function N(a){a=a||{};!a.fillLinearGradientColorStops&&!a.fillRadialGradientColorStops&&!a.fillPatternImage&&(a.fill=a.fill||"black");return a}d=function(c){a(d,c);function d(a){a=c.call(this,N(a))||this;a._partialTextX=0;a._partialTextY=0;for(var b=0;b 1&&(s+=f)}};d.prototype._hitFunc=function(a){var b=this.getWidth(),c=this.getHeight();a.beginPath();a.rect(0,0,b,c);a.closePath();a.fillStrokeShape(this)};d.prototype.setText=function(a){a=b.Util._isString(a)?a:a===null||a===void 0?"":a+"";this._setAttr(r,a);return this};d.prototype.getWidth=function(){var a=this.attrs.width===i||this.attrs.width===void 0;return a?this.getTextWidth()+this.padding()*2:this.attrs.width};d.prototype.getHeight=function(){var a=this.attrs.height===i||this.attrs.height===void 0;return a?this.fontSize()*this.textArr.length*this.lineHeight()+this.padding()*2:this.attrs.height};d.prototype.getTextWidth=function(){return this.textWidth};d.prototype.getTextHeight=function(){b.Util.warn("text.getTextHeight() method is deprecated. Use text.height() - for full height and text.fontSize() - for one line height.");return this.textHeight};d.prototype.measureSize=function(a){var b=K(),c=this.fontSize();b.save();b.font=this._getContextFont();a=b.measureText(a);b.restore();return{width:a.width,height:c}};d.prototype._getContextFont=function(){return e.Konva.UA.isIE?this.fontStyle()+A+this.fontSize()+y+this.fontFamily():this.fontStyle()+A+this.fontVariant()+A+(this.fontSize()+y)+I(this.fontFamily())};d.prototype._addTextLine=function(a){this.align()===l&&(a=a.trim());var b=this._getTextWidth(a);return this.textArr.push({text:a,width:b})};d.prototype._getTextWidth=function(a){var b=this.letterSpacing(),c=a.length;return K().measureText(a).width+(c?b*(c-1):0)};d.prototype._setTextData=function(){var a=this.text().split(" "),b=+this.fontSize(),c=0,d=this.lineHeight()*b,e=this.attrs.width,f=this.attrs.height,g=e!==i&&e!==void 0,h=f!==i&&f!==void 0,j=this.padding();e=e-j*2;f=f-j*2;j=0;var k=this.wrap(),l=k!==E;k=k!==D&&l;var m=this.ellipsis();this.textArr=[];K().font=this._getContextFont();var n=m?this._getTextWidth(F):0;for(var p=0,q=a.length;p e)while(r.length>0){var t=0,u=r.length,v="",w=0;while(t>>1,y=r.slice(0,x+1),z=this._getTextWidth(y)+n;z<=e?(t=x+1,v=y,w=z):u=x}if(v){if(k){y=r[v.length];z=y===A||y===o;z&&w<=e?x=v.length:x=Math.max(v.lastIndexOf(A),v.lastIndexOf(o))+1;x>0&&(t=x,v=v.slice(0,t),w=this._getTextWidth(v))}v=v.trimRight();this._addTextLine(v);c=Math.max(c,w);j+=d;if(!l||h&&j+d>f){u=this.textArr[this.textArr.length-1];if(u&&m){y=this._getTextWidth(u.text+F)0){s=this._getTextWidth(r);if(s<=e){this._addTextLine(r);j+=d;c=Math.max(c,s);break}}}else break}else this._addTextLine(r),j+=d,c=Math.max(c,s);if(h&&j+d>f)break}this.textHeight=b;this.textWidth=c};d.prototype.getStrokeScaleEnabled=function(){return!0};return d}(d.Shape);$.Text=d;d.prototype._fillFunc=L;d.prototype._strokeFunc=M;d.prototype.className=s;d.prototype._attrsAffectingSize=["text","fontSize","padding","wrap","lineHeight"];g._registerNode(d);c.Factory.overWriteSetter(d,"width",f.getNumberOrAutoValidator());c.Factory.overWriteSetter(d,"height",f.getNumberOrAutoValidator());c.Factory.addGetterSetter(d,"fontFamily","Arial");c.Factory.addGetterSetter(d,"fontSize",12,f.getNumberValidator());c.Factory.addGetterSetter(d,"fontStyle",x);c.Factory.addGetterSetter(d,"fontVariant",x);c.Factory.addGetterSetter(d,"padding",0,f.getNumberValidator());c.Factory.addGetterSetter(d,"align",q);c.Factory.addGetterSetter(d,"verticalAlign",t);c.Factory.addGetterSetter(d,"lineHeight",1,f.getNumberValidator());c.Factory.addGetterSetter(d,"wrap",C);c.Factory.addGetterSetter(d,"ellipsis",!1,f.getBooleanValidator());c.Factory.addGetterSetter(d,"letterSpacing",0,f.getNumberValidator());c.Factory.addGetterSetter(d,"text","",f.getStringValidator());c.Factory.addGetterSetter(d,"textDecoration","");b.Collection.mapMethods(d)}var fc=!1;function gc(){fc||(fc=!0,ec());return dc.exports}var hc={},ic={exports:hc};function jc(){var a=this&&this.__extends||function(){var a=function(b,c){a=Object.setPrototypeOf||{__proto__:[]}instanceof Array&&function(a,b){a.__proto__=b}||function(a,b){for(var c in b)Object.prototype.hasOwnProperty.call(b,c)&&(a[c]=b[c])};return a(b,c)};return function(b,c){a(b,c);function d(){this.constructor=b}b.prototype=c===null?Object.create(c):(d.prototype=c.prototype,new d())}}();Object.defineProperty(hc,"__esModule",{value:!0});hc.TextPath=void 0;var b=p(),c=z(),d=X(),e=Eb(),f=gc(),g=u(),h=k(),i="",j="normal";function l(a){a.fillText(this.partialText,0,0)}function m(a){a.strokeText(this.partialText,0,0)}d=function(c){a(d,c);function d(a){var d=c.call(this,a)||this;d.dummyCanvas=b.Util.createCanvasElement();d.dataArray=[];d.dataArray=e.Path.parsePathData(d.attrs.data);d.on("dataChange.konva",function(){this.dataArray=e.Path.parsePathData(this.attrs.data),this._setTextData()});d.on("textChange.konva alignChange.konva letterSpacingChange.konva kerningFuncChange.konva",d._setTextData);a&&a.getKerning&&(b.Util.warn("getKerning TextPath API is deprecated. Please use "kerningFunc" instead."),d.kerningFunc(a.getKerning));d._setTextData();return d}d.prototype._sceneFunc=function(a){a.setAttr("font",this._getContextFont());a.setAttr("textBaseline",this.textBaseline());a.setAttr("textAlign","left");a.save();var b=this.textDecoration(),c=this.fill(),d=this.fontSize(),e=this.glyphInfo;b==="underline"&&a.beginPath();for(var f=0;f =1){var c=b[0].p0;a.moveTo(c.x,c.y)}for(c=0;c 0&&(i+=a.dataArray[b].pathLength);b=0;d==="center"&&(b=Math.max(0,i/2-h/2));d==="right"&&(b=Math.max(0,i-h));var j=f.stringToArray(this.text()),k=this.text().split(" ").length-1,l,m,n,o=-1,p=0,q=function(){p=0;var b=a.dataArray;for(var c=o+1;c 0){o=c;return b[c]}else b[c].command==="M"&&(l={x:b[c].points[0],y:b[c].points[1]});return{}},r=function(f){var b=a._getTextSize(f).width+c;f===" "&&d==="justify"&&(b+=(i-h)/k);f=0;var g=0;m=void 0;while(Math.abs(b-f)/b>.01&&g<20){g++;var j=f;while(n===void 0)n=q(),n&&j+n.pathLengthb?m=e.Path.getPointOnLine(b,l.x,l.y,n.points[0],n.points[1],l.x,l.y):n=void 0;break;case"A":var o=n.points[4],r=n.points[5],s=n.points[4]+r;p===0?p=o+1e-8:b>f?p+=Math.PI/180*r/Math.abs(r):p-=Math.PI/360*r/Math.abs(r);(r<0&&p =0&&p>s)&&(p=s,j=!0);m=e.Path.getPointOnEllipticalArc(n.points[0],n.points[1],n.points[2],n.points[3],p,n.points[6]);break;case"C":p===0?b>n.pathLength?p=1e-8:p=b/n.pathLength:b>f?p+=(b-f)/n.pathLength/2:p=Math.max(p-(f-b)/n.pathLength/2,0);p>1&&(p=1,j=!0);m=e.Path.getPointOnCubicBezier(p,n.start.x,n.start.y,n.points[0],n.points[1],n.points[2],n.points[3],n.points[4],n.points[5]);break;case"Q":p===0?p=b/n.pathLength:b>f?p+=(b-f)/n.pathLength:p-=(f-b)/n.pathLength;p>1&&(p=1,j=!0);m=e.Path.getPointOnQuadraticBezier(p,n.start.x,n.start.y,n.points[0],n.points[1],n.points[2],n.points[3]);break}m!==void 0&&(f=e.Path.getLineLength(l.x,l.y,m.x,m.y));j&&(j=!1,n=void 0)}},s="C",t=a._getTextSize(s).width+c;b=b/t-1;for(t=0;th.x?-1:1,k=this.findOne(".top-left").y()>h.y?-1:1;e=c*this.cos*j;b=c*this.sin*k;this.findOne(".top-left").x(h.x-e);this.findOne(".top-left").y(h.y-b)}}else if(this._movingAnchorName==="top-center")this.findOne(".top-left").y(d.y());else if(this._movingAnchorName==="top-right"){if(f){h=g?{x:this.width()/2,y:this.height()/2}:{x:this.findOne(".bottom-left").x(),y:this.findOne(".bottom-left").y()};c=Math.sqrt(Math.pow(d.x()-h.x,2)+Math.pow(h.y-d.y(),2));var j=this.findOne(".top-right").x()h.y?-1:1;e=c*this.cos*j;b=c*this.sin*k;this.findOne(".top-right").x(h.x+e);this.findOne(".top-right").y(h.y-b)}var l=d.position();this.findOne(".top-left").y(l.y);this.findOne(".bottom-right").x(l.x)}else if(this._movingAnchorName==="middle-left")this.findOne(".top-left").x(d.x());else if(this._movingAnchorName==="middle-right")this.findOne(".bottom-right").x(d.x());else if(this._movingAnchorName==="bottom-left"){if(f){h=g?{x:this.width()/2,y:this.height()/2}:{x:this.findOne(".top-right").x(),y:this.findOne(".top-right").y()};c=Math.sqrt(Math.pow(h.x-d.x(),2)+Math.pow(d.y()-h.y,2));var j=h.x =0){var g=f.point({x:-this.padding()*2,y:0});a.x+=g.x;a.y+=g.y;a.width+=this.padding()*2;this._movingAnchorName=this._movingAnchorName.replace("left","right");this._anchorDragOffset.x-=g.x;this._anchorDragOffset.y-=g.y}else if(this._movingAnchorName&&a.width<0&&this._movingAnchorName.indexOf("right")>=0){var g=f.point({x:this.padding()*2,y:0});this._movingAnchorName=this._movingAnchorName.replace("right","left");this._anchorDragOffset.x-=g.x;this._anchorDragOffset.y-=g.y;a.width+=this.padding()*2}if(this._movingAnchorName&&a.height<0&&this._movingAnchorName.indexOf("top")>=0){var g=f.point({x:0,y:-this.padding()*2});a.x+=g.x;a.y+=g.y;this._movingAnchorName=this._movingAnchorName.replace("top","bottom");this._anchorDragOffset.x-=g.x;this._anchorDragOffset.y-=g.y;a.height+=this.padding()*2}else if(this._movingAnchorName&&a.height<0&&this._movingAnchorName.indexOf("bottom")>=0){var g=f.point({x:0,y:this.padding()*2});this._movingAnchorName=this._movingAnchorName.replace("bottom","top");this._anchorDragOffset.x-=g.x;this._anchorDragOffset.y-=g.y;a.height+=this.padding()*2}if(this.boundBoxFunc()){f=this.boundBoxFunc()(e,a);f?a=f:c.Util.warn("boundBoxFunc returned falsy. You should return new bound rect from it!")}g=1e7;f=new c.Transform();f.translate(e.x,e.y);f.rotate(e.rotation);f.scale(e.width/g,e.height/g);e=new c.Transform();e.translate(a.x,a.y);e.rotate(a.rotation);e.scale(a.width/g,a.height/g);var h=e.multiply(f.invert());this._nodes.forEach(function(a){var e=a.getParent().getAbsoluteTransform(),f=a.getTransform().copy();f.translate(a.offsetX(),a.offsetY());var g=new c.Transform();g.multiply(e.copy().invert()).multiply(h).multiply(e).multiply(f);e=g.decompose();a.setAttrs(e);d._fire("transform",{evt:b,target:a});a._fire("transform",{evt:b,target:a});(f=a.getLayer())===null||f===void 0?void 0:f.batchDraw()});this.rotation(c.Util._getRotation(a.rotation));this._resetTransformCache();this.update();this.getLayer().batchDraw()};b.prototype.forceUpdate=function(){this._resetTransformCache(),this.update()};b.prototype._batchChangeChild=function(a,b){a=this.findOne(a);a.setAttrs(b)};b.prototype.update=function(){var a=this,b=this._getNodeRect();this.rotation(c.Util._getRotation(b.rotation));var d=b.width;b=b.height;var e=this.enabledAnchors(),f=this.resizeEnabled(),g=this.padding(),h=this.anchorSize();this.find("._anchor").each(function(b){b.setAttrs({width:h,height:h,offsetX:h/2,offsetY:h/2,stroke:a.anchorStroke(),strokeWidth:a.anchorStrokeWidth(),fill:a.anchorFill(),cornerRadius:a.anchorCornerRadius()})});this._batchChangeChild(".top-left",{x:0,y:0,offsetX:h/2+g,offsetY:h/2+g,visible:f&&e.indexOf("top-left")>=0});this._batchChangeChild(".top-center",{x:d/2,y:0,offsetY:h/2+g,visible:f&&e.indexOf("top-center")>=0});this._batchChangeChild(".top-right",{x:d,y:0,offsetX:h/2-g,offsetY:h/2+g,visible:f&&e.indexOf("top-right")>=0});this._batchChangeChild(".middle-left",{x:0,y:b/2,offsetX:h/2+g,visible:f&&e.indexOf("middle-left")>=0});this._batchChangeChild(".middle-right",{x:d,y:b/2,offsetX:h/2-g,visible:f&&e.indexOf("middle-right")>=0});this._batchChangeChild(".bottom-left",{x:0,y:b,offsetX:h/2+g,offsetY:h/2-g,visible:f&&e.indexOf("bottom-left")>=0});this._batchChangeChild(".bottom-center",{x:d/2,y:b,offsetY:h/2-g,visible:f&&e.indexOf("bottom-center")>=0});this._batchChangeChild(".bottom-right",{x:d,y:b,offsetX:h/2-g,offsetY:h/2-g,visible:f&&e.indexOf("bottom-right")>=0});this._batchChangeChild(".rotater",{x:d/2,y:-this.rotateAnchorOffset()*c.Util._sign(b)-g,visible:this.rotateEnabled()});this._batchChangeChild(".back",{width:d,height:b,visible:this.borderEnabled(),stroke:this.borderStroke(),strokeWidth:this.borderStrokeWidth(),dash:this.borderDash(),x:0,y:0});(f=this.getLayer())===null||f===void 0?void 0:f.batchDraw()};b.prototype.isTransforming=function(){return this._transforming};b.prototype.stopTransform=function(){if(this._transforming){this._removeEvents();var a=this.findOne("."+this._movingAnchorName);a&&a.stopDrag()}};b.prototype.destroy=function(){this.getStage()&&this._cursorChange&&(this.getStage().content.style.cursor="");h.Group.prototype.destroy.call(this);this.detach();this._removeEvents();return this};b.prototype.toObject=function(){return e.Node.prototype.toObject.call(this)};return b}(h.Group);mc.Transformer=C;function D(a){a instanceof Array||c.Util.warn("enabledAnchors value should be an array");a instanceof Array&&a.forEach(function(a){v.indexOf(a)===-1&&c.Util.warn("Unknown anchor name: "+a+". Available names are: "+v.join(", "))});return a||[]}C.prototype.className="Transformer";l._registerNode(C);d.Factory.addGetterSetter(C,"enabledAnchors",v,D);d.Factory.addGetterSetter(C,"resizeEnabled",!0);d.Factory.addGetterSetter(C,"anchorSize",10,j.getNumberValidator());d.Factory.addGetterSetter(C,"rotateEnabled",!0);d.Factory.addGetterSetter(C,"rotationSnaps",[]);d.Factory.addGetterSetter(C,"rotateAnchorOffset",50,j.getNumberValidator());d.Factory.addGetterSetter(C,"rotationSnapTolerance",5,j.getNumberValidator());d.Factory.addGetterSetter(C,"borderEnabled",!0);d.Factory.addGetterSetter(C,"anchorStroke","rgb(0, 161, 255)");d.Factory.addGetterSetter(C,"anchorStrokeWidth",1,j.getNumberValidator());d.Factory.addGetterSetter(C,"anchorFill","white");d.Factory.addGetterSetter(C,"anchorCornerRadius",0,j.getNumberValidator());d.Factory.addGetterSetter(C,"borderStroke","rgb(0, 161, 255)");d.Factory.addGetterSetter(C,"borderStrokeWidth",1,j.getNumberValidator());d.Factory.addGetterSetter(C,"borderDash");d.Factory.addGetterSetter(C,"keepRatio",!0);d.Factory.addGetterSetter(C,"centeredScaling",!1);d.Factory.addGetterSetter(C,"ignoreStroke",!1);d.Factory.addGetterSetter(C,"padding",0,j.getNumberValidator());d.Factory.addGetterSetter(C,"node");d.Factory.addGetterSetter(C,"nodes");d.Factory.addGetterSetter(C,"boundBoxFunc");d.Factory.addGetterSetter(C,"shouldOverdrawWholeArea",!1);d.Factory.backCompat(C,{lineEnabled:"borderEnabled",rotateHandlerOffset:"rotateAnchorOffset",enabledHandlers:"enabledAnchors"});c.Collection.mapMethods(C)}var pc=!1;function qc(){pc||(pc=!0,oc());return nc.exports}var rc={},sc={exports:rc};function tc(){var a=this&&this.__extends||function(){var a=function(b,c){a=Object.setPrototypeOf||{__proto__:[]}instanceof Array&&function(a,b){a.__proto__=b}||function(a,b){for(var c in b)Object.prototype.hasOwnProperty.call(b,c)&&(a[c]=b[c])};return a(b,c)};return function(b,c){a(b,c);function d(){this.constructor=b}b.prototype=c===null?Object.create(c):(d.prototype=c.prototype,new d())}}();Object.defineProperty(rc,"__esModule",{value:!0});rc.Wedge=void 0;var b=p(),c=z(),d=X(),e=k(),f=u(),g=k();d=function(b){a(c,b);function c(){return b!==null&&b.apply(this,arguments)||this}c.prototype._sceneFunc=function(a){a.beginPath(),a.arc(0,0,this.radius(),0,e.Konva.getAngle(this.angle()),this.clockwise()),a.lineTo(0,0),a.closePath(),a.fillStrokeShape(this)};c.prototype.getWidth=function(){return this.radius()*2};c.prototype.getHeight=function(){return this.radius()*2};c.prototype.setWidth=function(a){this.radius(a/2)};c.prototype.setHeight=function(a){this.radius(a/2)};return c}(d.Shape);rc.Wedge=d;d.prototype.className="Wedge";d.prototype._centroid=!0;d.prototype._attrsAffectingSize=["radius"];g._registerNode(d);c.Factory.addGetterSetter(d,"radius",0,f.getNumberValidator());c.Factory.addGetterSetter(d,"angle",0,f.getNumberValidator());c.Factory.addGetterSetter(d,"clockwise",!1);c.Factory.backCompat(d,{angleDeg:"angle",getAngleDeg:"getAngle",setAngleDeg:"setAngle"});b.Collection.mapMethods(d)}var uc=!1;function vc(){uc||(uc=!0,tc());return sc.exports}var wc={},xc={exports:wc};function yc(){Object.defineProperty(wc,"__esModule",{value:!0});wc.Blur=void 0;var a=z(),b=R(),c=u();function d(){this.r=0,this.g=0,this.b=0,this.a=0,this.next=null}var e=[512,512,456,512,328,456,335,512,405,328,271,456,388,335,292,512,454,405,364,328,298,271,496,456,420,388,360,335,312,292,273,512,482,454,428,405,383,364,345,328,312,298,284,271,259,496,475,456,437,420,404,388,374,360,347,335,323,312,302,292,282,273,265,512,497,482,468,454,441,428,417,405,394,383,373,364,354,345,337,328,320,312,305,298,291,284,278,271,265,259,507,496,485,475,465,456,446,437,428,420,412,404,396,388,381,374,367,360,354,347,341,335,329,323,318,312,307,302,297,292,287,282,278,273,269,265,261,512,505,497,489,482,475,468,461,454,447,441,435,428,422,417,411,405,399,394,389,383,378,373,368,364,359,354,350,345,341,337,332,328,324,320,316,312,309,305,301,298,294,291,287,284,281,278,274,271,268,265,262,259,257,507,501,496,491,485,480,475,470,465,460,456,451,446,442,437,433,428,424,420,416,412,408,404,400,396,392,388,385,381,377,374,370,367,363,360,357,354,350,347,344,341,338,335,332,329,326,323,320,318,315,312,310,307,304,302,299,297,294,292,289,287,285,282,280,278,275,273,271,269,267,265,263,261,259],f=[9,11,12,13,13,14,14,15,15,15,15,16,16,16,16,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,19,19,19,19,19,19,19,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24];function g(a,b){var c=a.data,g=a.width;a=a.height;var h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D=b+b+1,E=g-1,F=a-1,G=b+1,H=G*(G+1)/2,I=new d(),J=null,K=I,L,M,N=e[b],O=f[b];for(j=1;j >O,B!==0?(B=255/B,c[D]=(m*N>>O)*B,c[D+1]=(n*N>>O)*B,c[D+2]=(o*N>>O)*B):c[D]=c[D+1]=c[D+2]=0,m-=q,n-=r,o-=s,p-=t,q-=L.r,r-=L.g,s-=L.b,t-=L.a,k=l+((k=h+b+1) >O,B>0?(B=255/B,c[k]=(m*N>>O)*B,c[k+1]=(n*N>>O)*B,c[k+2]=(o*N>>O)*B):c[k]=c[k+1]=c[k+2]=0,m-=q,n-=r,o-=s,p-=t,q-=L.r,r-=L.g,s-=L.b,t-=L.a,k=h+((k=i+G) 0&&g(a,b)};wc.Blur=h;a.Factory.addGetterSetter(b.Node,"blurRadius",0,c.getNumberValidator(),a.Factory.afterSetFilter)}var zc=!1;function Ac(){zc||(zc=!0,yc());return xc.exports}var Bc={},Cc={exports:Bc};function Dc(){Object.defineProperty(Bc,"__esModule",{value:!0});Bc.Brighten=void 0;var a=z(),b=R(),c=u(),d=function(a){var b=this.brightness()*255;a=a.data;var c=a.length,d;for(d=0;d 255?255:d,e=e<0?0:e>255?255:e,f=f<0?0:f>255?255:f,a[g]=d,a[g+1]=e,a[g+2]=f};Gc.Contrast=d;a.Factory.addGetterSetter(b.Node,"contrast",0,c.getNumberValidator(),a.Factory.afterSetFilter)}var Jc=!1;function Kc(){Jc||(Jc=!0,Ic());return Hc.exports}var Lc={},Mc={exports:Lc};function Nc(){Object.defineProperty(Lc,"__esModule",{value:!0});Lc.Emboss=void 0;var a=z(),b=R(),c=p(),d=u(),e=function(a){var b=this.embossStrength()*10,d=this.embossWhiteLevel()*255,e=this.embossDirection(),f=this.embossBlend(),g=0,h=0,i=a.data,j=a.width;a=a.height;var k=j*4,l=a;switch(e){case"top-left":g=-1;h=-1;break;case"top":g=-1;h=0;break;case"top-right":g=-1;h=1;break;case"right":g=0;h=1;break;case"bottom-right":g=1;h=1;break;case"bottom":g=1;h=0;break;case"bottom-left":g=1;h=-1;break;case"left":g=0;h=-1;break;default:c.Util.error("Unknown emboss direction: "+e)}do{e=(l-1)*k;var m=g;l+m<1&&(m=0);l+m>a&&(m=0);m=(l-1+m)*j*4;var n=j;do{var o=e+(n-1)*4,p=h;n+p<1&&(p=0);n+p>j&&(p=0);p=m+(n-1+p)*4;var q=i[o]-i[p],r=i[o+1]-i[p+1];p=i[o+2]-i[p+2];q=q;var s=q>0?q:-q,t=r>0?r:-r,u=p>0?p:-p;t>s&&(q=r);u>s&&(q=p);q*=b;if(f){t=i[o]+q;r=i[o+1]+q;u=i[o+2]+q;i[o]=t>255?255:t<0?0:t;i[o+1]=r>255?255:r<0?0:r;i[o+2]=u>255?255:u<0?0:u}else{s=d-q;s<0?s=0:s>255&&(s=255);i[o]=i[o+1]=i[o+2]=s}}while(--n)}while(--l)};Lc.Emboss=e;a.Factory.addGetterSetter(b.Node,"embossStrength",.5,d.getNumberValidator(),a.Factory.afterSetFilter);a.Factory.addGetterSetter(b.Node,"embossWhiteLevel",.5,d.getNumberValidator(),a.Factory.afterSetFilter);a.Factory.addGetterSetter(b.Node,"embossDirection","top-left",null,a.Factory.afterSetFilter);a.Factory.addGetterSetter(b.Node,"embossBlend",!1,null,a.Factory.afterSetFilter)}var Oc=!1;function Pc(){Oc||(Oc=!0,Nc());return Mc.exports}var Qc={},Rc={exports:Qc};function Sc(){Object.defineProperty(Qc,"__esModule",{value:!0});Qc.Enhance=void 0;var a=z(),b=R(),c=u();function d(a,b,c,d,e){c=c-b;e=e-d;if(c===0)return d+e/2;if(e===0)return d;a=(a-b)/c;a=e*a+d;return a}var e=function(a){a=a.data;var b=a.length,c=a[0],e=c,f,g=a[1],h=g,i=a[2],j=i,k,l=this.enhance();if(l===0)return;for(k=0;ke&&(e=f),f=a[k+1],f h&&(h=f),f=a[k+2],fj&&(j=f);e===c&&(e=255,c=0);h===g&&(h=255,g=0);j===i&&(j=255,i=0);var m,n,o,p,q,r;l>0?(f=e+l*(255-e),n=c-l*(c-0),o=h+l*(255-h),p=g-l*(g-0),q=j+l*(255-j),r=i-l*(i-0)):(m=(e+c)*.5,f=e+l*(e-m),n=c+l*(c-m),m=(h+g)*.5,o=h+l*(h-m),p=g+l*(g-m),m=(j+i)*.5,q=j+l*(j-m),r=i+l*(i-m));for(k=0;kn?m:n;m=a;a=e;var o,p,q=360/a*Math.PI/180,r,s;for(p=0;po?n:o;n=a;var p=e,q;c=c.polarRotation||0;for(h=0;h b&&(t=s,u=0,v=-1);for(h=0;h =0&&n =0&&o=0&&n =0&&o=255*4?255:0}return g}function k(a,b,c){var d=[1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9],e=Math.round(Math.sqrt(d.length)),f=Math.floor(e/2),g=[];for(var h=0;h =0&&n =0&&o=d)continue;for(g=q;g =e)continue;h=(d*g+f)*4;i+=a[h+0];j+=a[h+1];k+=a[h+2];l+=a[h+3];u+=1}}i=i/u;j=j/u;k=k/u;l=l/u;for(f=o;f =d)continue;for(g=q;g
=e)continue;h=(d*g+f)*4;a[h+0]=i;a[h+1]=j;a[h+2]=k;a[h+3]=l}}}};Dd.Pixelate=e;a.Factory.addGetterSetter(c.Node,"pixelSize",8,d.getNumberValidator(),a.Factory.afterSetFilter)}var Gd=!1;function Hd(){Gd||(Gd=!0,Fd());return Ed.exports}var Id={},Jd={exports:Id};function Kd(){Object.defineProperty(Id,"__esModule",{value:!0});Id.Posterize=void 0;var a=z(),b=R(),c=u(),d=function(a){var b=Math.round(this.levels()*254)+1;a=a.data;var c=a.length;b=255/b;var d;for(d=0;d 255)return 255;else if(a<0)return 0;else return Math.round(a)});a.Factory.addGetterSetter(b.Node,"green",0,function(a){this._filterUpToDate=!1;if(a>255)return 255;else if(a<0)return 0;else return Math.round(a)});a.Factory.addGetterSetter(b.Node,"blue",0,c.RGBComponent,a.Factory.afterSetFilter)}var Qd=!1;function Rd(){Qd||(Qd=!0,Pd());return Od.exports}var Sd={},Td={exports:Sd};function Ud(){Object.defineProperty(Sd,"__esModule",{value:!0});Sd.RGBA=void 0;var a=z(),b=R(),c=u(),d=function(a){a=a.data;var b=a.length,c=this.red(),d=this.green(),e=this.blue(),f=this.alpha(),g,h;for(g=0;g255)return 255;else if(a<0)return 0;else return Math.round(a)});a.Factory.addGetterSetter(b.Node,"green",0,function(a){this._filterUpToDate=!1;if(a>255)return 255;else if(a<0)return 0;else return Math.round(a)});a.Factory.addGetterSetter(b.Node,"blue",0,c.RGBComponent,a.Factory.afterSetFilter);a.Factory.addGetterSetter(b.Node,"alpha",1,function(a){this._filterUpToDate=!1;if(a>1)return 1;else if(a<0)return 0;else return a})}var Vd=!1;function Wd(){Vd||(Vd=!0,Ud());return Td.exports}var Xd={},Yd={exports:Xd};function Zd(){Object.defineProperty(Xd,"__esModule",{value:!0});Xd.Sepia=void 0;var a=function(a){a=a.data;var b=a.length,c,d,e,f;for(c=0;c127&&(h=255-h);i>127&&(i=255-i);j>127&&(j=255-j);b[g]=h;b[g+1]=i;b[g+2]=j}while(--f)}while(--a)};be.Solarize=a}var ee=!1;function fe(){ee||(ee=!0,de());return ce.exports}var ge={},he={exports:ge};function ie(){Object.defineProperty(ge,"__esModule",{value:!0});ge.Threshold=void 0;var a=z(),b=R(),c=u(),d=function(a){var b=this.threshold()*255;a=a.data;var c=a.length,d;for(d=0;d -----
three.r137_mod",[],(function $module_three_r137_mod(global,require,requireDynamic,requireLazy,module,exports){ "use strict"; (function (global, factory) { typeof exports === "object" && typeof module !== "undefined" ? factory(exports) : typeof define === "function" && define.amd ? define(["exports"], factory) : (global = typeof globalThis !== "undefined" ? globalThis : global || self, factory(global.THREE = {})); })(this, (function (exports) { "use strict"; const REVISION = "137"; const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const CullFaceFrontBack = 3; const BasicShadowMap = 0; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const FlatShading = 1; const SmoothShading = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const CubeUVRefractionMapping = 307; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipMapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const NearestMipMapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipMapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const LinearMipMapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBFormat = 1022; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const LoopOnce = 2200; const LoopRepeat = 2201; const LoopPingPong = 2202; const InterpolateDiscrete = 2300; const InterpolateLinear = 2301; const InterpolateSmooth = 2302; const ZeroCurvatureEnding = 2400; const ZeroSlopeEnding = 2401; const WrapAroundEnding = 2402; const NormalAnimationBlendMode = 2500; const AdditiveAnimationBlendMode = 2501; const TrianglesDrawMode = 0; const TriangleStripDrawMode = 1; const TriangleFanDrawMode = 2; const LinearEncoding = 3000; const sRGBEncoding = 3001; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; const ZeroStencilOp = 0; const KeepStencilOp = 7680; const ReplaceStencilOp = 7681; const IncrementStencilOp = 7682; const DecrementStencilOp = 7683; const IncrementWrapStencilOp = 34055; const DecrementWrapStencilOp = 34056; const InvertStencilOp = 5386; const NeverStencilFunc = 512; const LessStencilFunc = 513; const EqualStencilFunc = 514; const LessEqualStencilFunc = 515; const GreaterStencilFunc = 516; const NotEqualStencilFunc = 517; const GreaterEqualStencilFunc = 518; const AlwaysStencilFunc = 519; const StaticDrawUsage = 35044; const DynamicDrawUsage = 35048; const StreamDrawUsage = 35040; const StaticReadUsage = 35045; const DynamicReadUsage = 35049; const StreamReadUsage = 35041; const StaticCopyUsage = 35046; const DynamicCopyUsage = 35050; const StreamCopyUsage = 35042; const GLSL1 = "100"; const GLSL3 = "300 es"; const _SRGBAFormat = 1035; // fallback for WebGL 1 /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener(type, listener) { if (this._listeners === undefined) this._listeners = {}; const listeners = this._listeners; if (listeners[type] === undefined) { listeners[type] = []; } if (listeners[type].indexOf(listener) === -1) { listeners[type].push(listener); } } hasEventListener(type, listener) { if (this._listeners === undefined) return false; const listeners = this._listeners; return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1; } removeEventListener(type, listener) { if (this._listeners === undefined) return; const listeners = this._listeners; const listenerArray = listeners[type]; if (listenerArray !== undefined) { const index = listenerArray.indexOf(listener); if (index !== -1) { listenerArray.splice(index, 1); } } } dispatchEvent(event) { if (this._listeners === undefined) return; const listeners = this._listeners; const listenerArray = listeners[event.type]; if (listenerArray !== undefined) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice(0); for (let i = 0, l = array.length; i < l; i++) { array[i].call(this, event); } event.target = null; } } } const _lut = []; for (let i = 0; i < 256; i++) { _lut[i] = (i < 16 ? "0" : "") + i.toString(16); } let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + "-" + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + "-" + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + "-" + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + "-" + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space. return uuid.toUpperCase(); } function clamp(value, min, max) { return Math.max(min, Math.min(max, value)); } // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo(n, m) { return (n % m + m) % m; } // Linear mapping from rangeto range function mapLinear(x, a1, a2, b1, b2) { return b1 + (x - a1) * (b2 - b1) / (a2 - a1); } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp(x, y, value) { if (x !== y) { return (value - x) / (y - x); } else { return 0; } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp(x, y, t) { return (1 - t) * x + t * y; } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp(x, y, lambda, dt) { return lerp(x, y, 1 - Math.exp(-lambda * dt)); } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong(x, length = 1) { return length - Math.abs(euclideanModulo(x, length * 2) - length); } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep(x, min, max) { if (x <= min) return 0; if (x >= max) return 1; x = (x - min) / (max - min); return x * x * (3 - 2 * x); } function smootherstep(x, min, max) { if (x <= min) return 0; if (x >= max) return 1; x = (x - min) / (max - min); return x * x * x * (x * (x * 6 - 15) + 10); } // Random integer from interval function randInt(low, high) { return low + Math.floor(Math.random() * (high - low + 1)); } // Random float from interval function randFloat(low, high) { return low + Math.random() * (high - low); } // Random float from <-range/2, range/2> interval function randFloatSpread(range) { return range * (0.5 - Math.random()); } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom(s) { if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm _seed = _seed * 16807 % 2147483647; return (_seed - 1) / 2147483646; } function degToRad(degrees) { return degrees * DEG2RAD; } function radToDeg(radians) { return radians * RAD2DEG; } function isPowerOfTwo(value) { return (value & value - 1) === 0 && value !== 0; } function ceilPowerOfTwo(value) { return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)); } function floorPowerOfTwo(value) { return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)); } function setQuaternionFromProperEuler(q, a, b, c, order) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by "order" // rotation by angle "a" is applied first, then by angle "b", then by angle "c" // angles are in radians const cos = Math.cos; const sin = Math.sin; const c2 = cos(b / 2); const s2 = sin(b / 2); const c13 = cos((a + c) / 2); const s13 = sin((a + c) / 2); const c1_3 = cos((a - c) / 2); const s1_3 = sin((a - c) / 2); const c3_1 = cos((c - a) / 2); const s3_1 = sin((c - a) / 2); switch (order) { case "XYX": q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13); break; case "YZY": q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13); break; case "ZXZ": q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13); break; case "XZX": q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13); break; case "YXY": q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13); break; case "ZYZ": q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13); break; default: console.warn("THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: " + order); } } var MathUtils = /*#__PURE__*/Object.freeze({ __proto__: null, DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler }); class Vector2 { constructor(x = 0, y = 0) { this.x = x; this.y = y; } get width() { return this.x; } set width(value) { this.x = value; } get height() { return this.y; } set height(value) { this.y = value; } set(x, y) { this.x = x; this.y = y; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error("index is out of range: " + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; default: throw new Error("index is out of range: " + index); } } clone() { return new this.constructor(this.x, this.y); } copy(v) { this.x = v.x; this.y = v.y; return this; } add(v, w) { if (w !== undefined) { console.warn("THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead."); return this.addVectors(v, w); } this.x += v.x; this.y += v.y; return this; } addScalar(s) { this.x += s; this.y += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; return this; } sub(v, w) { if (w !== undefined) { console.warn("THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."); return this.subVectors(v, w); } this.x -= v.x; this.y -= v.y; return this; } subScalar(s) { this.x -= s; this.y -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; return this; } divide(v) { this.x /= v.x; this.y /= v.y; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } applyMatrix3(m) { const x = this.x, y = this.y; const e = m.elements; this.x = e[0] * x + e[3] * y + e[6]; this.y = e[1] * x + e[4] * y + e[7]; return this; } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); return this; } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)); this.y = Math.max(min.y, Math.min(max.y, this.y)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); return this; } clampLength(min, max) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); return this; } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); return this; } negate() { this.x = -this.x; this.y = -this.y; return this; } dot(v) { return this.x * v.x + this.y * v.y; } cross(v) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt(this.x * this.x + this.y * this.y); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y); } normalize() { return this.divideScalar(this.length() || 1); } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2(-this.y, -this.x) + Math.PI; return angle; } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)); } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; return this; } equals(v) { return v.x === this.x && v.y === this.y; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; return array; } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn("THREE.Vector2: offset has been removed from .fromBufferAttribute()."); } this.x = attribute.getX(index); this.y = attribute.getY(index); return this; } rotateAround(center, angle) { const c = Math.cos(angle), s = Math.sin(angle); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } *[Symbol.iterator]() { yield this.x; yield this.y; } } Vector2.prototype.isVector2 = true; class Matrix3 { constructor() { this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1]; if (arguments.length > 0) { console.error("THREE.Matrix3: the constructor no longer reads arguments. use .set() instead."); } } set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { const te = this.elements; te[0] = n11; te[1] = n21; te[2] = n31; te[3] = n12; te[4] = n22; te[5] = n32; te[6] = n13; te[7] = n23; te[8] = n33; return this; } identity() { this.set(1, 0, 0, 0, 1, 0, 0, 0, 1); return this; } copy(m) { const te = this.elements; const me = m.elements; te[0] = me[0]; te[1] = me[1]; te[2] = me[2]; te[3] = me[3]; te[4] = me[4]; te[5] = me[5]; te[6] = me[6]; te[7] = me[7]; te[8] = me[8]; return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrix3Column(this, 0); yAxis.setFromMatrix3Column(this, 1); zAxis.setFromMatrix3Column(this, 2); return this; } setFromMatrix4(m) { const me = m.elements; this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]); return this; } multiply(m) { return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[0], a12 = ae[3], a13 = ae[6]; const a21 = ae[1], a22 = ae[4], a23 = ae[7]; const a31 = ae[2], a32 = ae[5], a33 = ae[8]; const b11 = be[0], b12 = be[3], b13 = be[6]; const b21 = be[1], b22 = be[4], b23 = be[7]; const b31 = be[2], b32 = be[5], b33 = be[8]; te[0] = a11 * b11 + a12 * b21 + a13 * b31; te[3] = a11 * b12 + a12 * b22 + a13 * b32; te[6] = a11 * b13 + a12 * b23 + a13 * b33; te[1] = a21 * b11 + a22 * b21 + a23 * b31; te[4] = a21 * b12 + a22 * b22 + a23 * b32; te[7] = a21 * b13 + a22 * b23 + a23 * b33; te[2] = a31 * b11 + a32 * b21 + a33 * b31; te[5] = a31 * b12 + a32 * b22 + a33 * b32; te[8] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar(s) { const te = this.elements; te[0] *= s; te[3] *= s; te[6] *= s; te[1] *= s; te[4] *= s; te[7] *= s; te[2] *= s; te[5] *= s; te[8] *= s; return this; } determinant() { const te = this.elements; const a = te[0], b = te[1], c = te[2], d = te[3], e = te[4], f = te[5], g = te[6], h = te[7], i = te[8]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n12 = te[3], n22 = te[4], n32 = te[5], n13 = te[6], n23 = te[7], n33 = te[8], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te[0] = t11 * detInv; te[1] = (n31 * n23 - n33 * n21) * detInv; te[2] = (n32 * n21 - n31 * n22) * detInv; te[3] = t12 * detInv; te[4] = (n33 * n11 - n31 * n13) * detInv; te[5] = (n31 * n12 - n32 * n11) * detInv; te[6] = t13 * detInv; te[7] = (n21 * n13 - n23 * n11) * detInv; te[8] = (n22 * n11 - n21 * n12) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[1]; m[1] = m[3]; m[3] = tmp; tmp = m[2]; m[2] = m[6]; m[6] = tmp; tmp = m[5]; m[5] = m[7]; m[7] = tmp; return this; } getNormalMatrix(matrix4) { return this.setFromMatrix4(matrix4).invert().transpose(); } transposeIntoArray(r) { const m = this.elements; r[0] = m[0]; r[1] = m[3]; r[2] = m[6]; r[3] = m[1]; r[4] = m[4]; r[5] = m[7]; r[6] = m[2]; r[7] = m[5]; r[8] = m[8]; return this; } setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { const c = Math.cos(rotation); const s = Math.sin(rotation); this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1); return this; } scale(sx, sy) { const te = this.elements; te[0] *= sx; te[3] *= sx; te[6] *= sx; te[1] *= sy; te[4] *= sy; te[7] *= sy; return this; } rotate(theta) { const c = Math.cos(theta); const s = Math.sin(theta); const te = this.elements; const a11 = te[0], a12 = te[3], a13 = te[6]; const a21 = te[1], a22 = te[4], a23 = te[7]; te[0] = c * a11 + s * a21; te[3] = c * a12 + s * a22; te[6] = c * a13 + s * a23; te[1] = -s * a11 + c * a21; te[4] = -s * a12 + c * a22; te[7] = -s * a13 + c * a23; return this; } translate(tx, ty) { const te = this.elements; te[0] += tx * te[2]; te[3] += tx * te[5]; te[6] += tx * te[8]; te[1] += ty * te[2]; te[4] += ty * te[5]; te[7] += ty * te[8]; return this; } equals(matrix) { const te = this.elements; const me = matrix.elements; for (let i = 0; i < 9; i++) { if (te[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 9; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te = this.elements; array[offset] = te[0]; array[offset + 1] = te[1]; array[offset + 2] = te[2]; array[offset + 3] = te[3]; array[offset + 4] = te[4]; array[offset + 5] = te[5]; array[offset + 6] = te[6]; array[offset + 7] = te[7]; array[offset + 8] = te[8]; return array; } clone() { return new this.constructor().fromArray(this.elements); } } Matrix3.prototype.isMatrix3 = true; function arrayNeedsUint32(array) { // assumes larger values usually on last for (let i = array.length - 1; i >= 0; --i) { if (array[i] > 65535) return true; } return false; } const TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, Uint8ClampedArray: Uint8ClampedArray, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array }; function getTypedArray(type, buffer) { return new TYPED_ARRAYS[type](buffer); } function createElementNS(name) { return document.createElementNS("http://www.w3.org/1999/xhtml", name); } const _colorKeywords = { "aliceblue": 0xF0F8FF, "antiquewhite": 0xFAEBD7, "aqua": 0x00FFFF, "aquamarine": 0x7FFFD4, "azure": 0xF0FFFF, "beige": 0xF5F5DC, "bisque": 0xFFE4C4, "black": 0x000000, "blanchedalmond": 0xFFEBCD, "blue": 0x0000FF, "blueviolet": 0x8A2BE2, "brown": 0xA52A2A, "burlywood": 0xDEB887, "cadetblue": 0x5F9EA0, "chartreuse": 0x7FFF00, "chocolate": 0xD2691E, "coral": 0xFF7F50, "cornflowerblue": 0x6495ED, "cornsilk": 0xFFF8DC, "crimson": 0xDC143C, "cyan": 0x00FFFF, "darkblue": 0x00008B, "darkcyan": 0x008B8B, "darkgoldenrod": 0xB8860B, "darkgray": 0xA9A9A9, "darkgreen": 0x006400, "darkgrey": 0xA9A9A9, "darkkhaki": 0xBDB76B, "darkmagenta": 0x8B008B, "darkolivegreen": 0x556B2F, "darkorange": 0xFF8C00, "darkorchid": 0x9932CC, "darkred": 0x8B0000, "darksalmon": 0xE9967A, "darkseagreen": 0x8FBC8F, "darkslateblue": 0x483D8B, "darkslategray": 0x2F4F4F, "darkslategrey": 0x2F4F4F, "darkturquoise": 0x00CED1, "darkviolet": 0x9400D3, "deeppink": 0xFF1493, "deepskyblue": 0x00BFFF, "dimgray": 0x696969, "dimgrey": 0x696969, "dodgerblue": 0x1E90FF, "firebrick": 0xB22222, "floralwhite": 0xFFFAF0, "forestgreen": 0x228B22, "fuchsia": 0xFF00FF, "gainsboro": 0xDCDCDC, "ghostwhite": 0xF8F8FF, "gold": 0xFFD700, "goldenrod": 0xDAA520, "gray": 0x808080, "green": 0x008000, "greenyellow": 0xADFF2F, "grey": 0x808080, "honeydew": 0xF0FFF0, "hotpink": 0xFF69B4, "indianred": 0xCD5C5C, "indigo": 0x4B0082, "ivory": 0xFFFFF0, "khaki": 0xF0E68C, "lavender": 0xE6E6FA, "lavenderblush": 0xFFF0F5, "lawngreen": 0x7CFC00, "lemonchiffon": 0xFFFACD, "lightblue": 0xADD8E6, "lightcoral": 0xF08080, "lightcyan": 0xE0FFFF, "lightgoldenrodyellow": 0xFAFAD2, "lightgray": 0xD3D3D3, "lightgreen": 0x90EE90, "lightgrey": 0xD3D3D3, "lightpink": 0xFFB6C1, "lightsalmon": 0xFFA07A, "lightseagreen": 0x20B2AA, "lightskyblue": 0x87CEFA, "lightslategray": 0x778899, "lightslategrey": 0x778899, "lightsteelblue": 0xB0C4DE, "lightyellow": 0xFFFFE0, "lime": 0x00FF00, "limegreen": 0x32CD32, "linen": 0xFAF0E6, "magenta": 0xFF00FF, "maroon": 0x800000, "mediumaquamarine": 0x66CDAA, "mediumblue": 0x0000CD, "mediumorchid": 0xBA55D3, "mediumpurple": 0x9370DB, "mediumseagreen": 0x3CB371, "mediumslateblue": 0x7B68EE, "mediumspringgreen": 0x00FA9A, "mediumturquoise": 0x48D1CC, "mediumvioletred": 0xC71585, "midnightblue": 0x191970, "mintcream": 0xF5FFFA, "mistyrose": 0xFFE4E1, "moccasin": 0xFFE4B5, "navajowhite": 0xFFDEAD, "navy": 0x000080, "oldlace": 0xFDF5E6, "olive": 0x808000, "olivedrab": 0x6B8E23, "orange": 0xFFA500, "orangered": 0xFF4500, "orchid": 0xDA70D6, "palegoldenrod": 0xEEE8AA, "palegreen": 0x98FB98, "paleturquoise": 0xAFEEEE, "palevioletred": 0xDB7093, "papayawhip": 0xFFEFD5, "peachpuff": 0xFFDAB9, "peru": 0xCD853F, "pink": 0xFFC0CB, "plum": 0xDDA0DD, "powderblue": 0xB0E0E6, "purple": 0x800080, "rebeccapurple": 0x663399, "red": 0xFF0000, "rosybrown": 0xBC8F8F, "royalblue": 0x4169E1, "saddlebrown": 0x8B4513, "salmon": 0xFA8072, "sandybrown": 0xF4A460, "seagreen": 0x2E8B57, "seashell": 0xFFF5EE, "sienna": 0xA0522D, "silver": 0xC0C0C0, "skyblue": 0x87CEEB, "slateblue": 0x6A5ACD, "slategray": 0x708090, "slategrey": 0x708090, "snow": 0xFFFAFA, "springgreen": 0x00FF7F, "steelblue": 0x4682B4, "tan": 0xD2B48C, "teal": 0x008080, "thistle": 0xD8BFD8, "tomato": 0xFF6347, "turquoise": 0x40E0D0, "violet": 0xEE82EE, "wheat": 0xF5DEB3, "white": 0xFFFFFF, "whitesmoke": 0xF5F5F5, "yellow": 0xFFFF00, "yellowgreen": 0x9ACD32 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb(p, q, t) { if (t < 0) t += 1; if (t > 1) t -= 1; if (t < 1 / 6) return p + (q - p) * 6 * t; if (t < 1 / 2) return q; if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t); return p; } function SRGBToLinear(c) { return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4); } function LinearToSRGB(c) { return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055; } class Color { constructor(r, g, b) { if (g === undefined && b === undefined) { // r is THREE.Color, hex or string return this.set(r); } return this.setRGB(r, g, b); } set(value) { if (value && value.isColor) { this.copy(value); } else if (typeof value === "number") { this.setHex(value); } else if (typeof value === "string") { this.setStyle(value); } return this; } setScalar(scalar) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex(hex) { hex = Math.floor(hex); this.r = (hex >> 16 & 255) / 255; this.g = (hex >> 8 & 255) / 255; this.b = (hex & 255) / 255; return this; } setRGB(r, g, b) { this.r = r; this.g = g; this.b = b; return this; } setHSL(h, s, l) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo(h, 1); s = clamp(s, 0, 1); l = clamp(l, 0, 1); if (s === 0) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * (1 + s) : l + s - l * s; const q = 2 * l - p; this.r = hue2rgb(q, p, h + 1 / 3); this.g = hue2rgb(q, p, h); this.b = hue2rgb(q, p, h - 1 / 3); } return this; } setStyle(style) { function handleAlpha(string) { if (string === undefined) return; if (parseFloat(string) < 1) { console.warn("THREE.Color: Alpha component of " + style + " will be ignored."); } } let m; if (m = /^((?:rgb|hsl)a?)(([^)]*))/.exec(style)) { // rgb / hsl let color; const name = m[1]; const components = m[2]; switch (name) { case "rgb": case "rgba": if (color = /^s*(d+)s*,s*(d+)s*,s*(d+)s*(?:,s*(d*.?d+)s*)?$/.exec(components)) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min(255, parseInt(color[1], 10)) / 255; this.g = Math.min(255, parseInt(color[2], 10)) / 255; this.b = Math.min(255, parseInt(color[3], 10)) / 255; handleAlpha(color[4]); return this; } if (color = /^s*(d+)\%s*,s*(d+)\%s*,s*(d+)\%s*(?:,s*(d*.?d+)s*)?$/.exec(components)) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min(100, parseInt(color[1], 10)) / 100; this.g = Math.min(100, parseInt(color[2], 10)) / 100; this.b = Math.min(100, parseInt(color[3], 10)) / 100; handleAlpha(color[4]); return this; } break; case "hsl": case "hsla": if (color = /^s*(d*.?d+)s*,s*(d+)\%s*,s*(d+)\%s*(?:,s*(d*.?d+)s*)?$/.exec(components)) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) const h = parseFloat(color[1]) / 360; const s = parseInt(color[2], 10) / 100; const l = parseInt(color[3], 10) / 100; handleAlpha(color[4]); return this.setHSL(h, s, l); } break; } } else if (m = /^#([A-Fa-fd]+)$/.exec(style)) { // hex color const hex = m[1]; const size = hex.length; if (size === 3) { // #ff0 this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255; this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255; this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255; return this; } else if (size === 6) { // #ff0000 this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255; this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255; this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255; return this; } } if (style && style.length > 0) { return this.setColorName(style); } return this; } setColorName(style) { // color keywords const hex = _colorKeywords[style.toLowerCase()]; if (hex !== undefined) { // red this.setHex(hex); } else { // unknown color console.warn("THREE.Color: Unknown color " + style); } return this; } clone() { return new this.constructor(this.r, this.g, this.b); } copy(color) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copySRGBToLinear(color) { this.r = SRGBToLinear(color.r); this.g = SRGBToLinear(color.g); this.b = SRGBToLinear(color.b); return this; } copyLinearToSRGB(color) { this.r = LinearToSRGB(color.r); this.g = LinearToSRGB(color.g); this.b = LinearToSRGB(color.b); return this; } convertSRGBToLinear() { this.copySRGBToLinear(this); return this; } convertLinearToSRGB() { this.copyLinearToSRGB(this); return this; } getHex() { return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0; } getHexString() { return ("000000" + this.getHex().toString(16)).slice(-6); } getHSL(target) { // h,s,l ranges are in 0.0 - 1.0 const r = this.r, g = this.g, b = this.b; const max = Math.max(r, g, b); const min = Math.min(r, g, b); let hue, saturation; const lightness = (min + max) / 2.0; if (min === max) { hue = 0; saturation = 0; } else { const delta = max - min; saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min); switch (max) { case r: hue = (g - b) / delta + (g < b ? 6 : 0); break; case g: hue = (b - r) / delta + 2; break; case b: hue = (r - g) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getStyle() { return "rgb(" + (this.r * 255 | 0) + "," + (this.g * 255 | 0) + "," + (this.b * 255 | 0) + ")"; } offsetHSL(h, s, l) { this.getHSL(_hslA); _hslA.h += h; _hslA.s += s; _hslA.l += l; this.setHSL(_hslA.h, _hslA.s, _hslA.l); return this; } add(color) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors(color1, color2) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar(s) { this.r += s; this.g += s; this.b += s; return this; } sub(color) { this.r = Math.max(0, this.r - color.r); this.g = Math.max(0, this.g - color.g); this.b = Math.max(0, this.b - color.b); return this; } multiply(color) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar(s) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp(color, alpha) { this.r += (color.r - this.r) * alpha; this.g += (color.g - this.g) * alpha; this.b += (color.b - this.b) * alpha; return this; } lerpColors(color1, color2, alpha) { this.r = color1.r + (color2.r - color1.r) * alpha; this.g = color1.g + (color2.g - color1.g) * alpha; this.b = color1.b + (color2.b - color1.b) * alpha; return this; } lerpHSL(color, alpha) { this.getHSL(_hslA); color.getHSL(_hslB); const h = lerp(_hslA.h, _hslB.h, alpha); const s = lerp(_hslA.s, _hslB.s, alpha); const l = lerp(_hslA.l, _hslB.l, alpha); this.setHSL(h, s, l); return this; } equals(c) { return c.r === this.r && c.g === this.g && c.b === this.b; } fromArray(array, offset = 0) { this.r = array[offset]; this.g = array[offset + 1]; this.b = array[offset + 2]; return this; } toArray(array = [], offset = 0) { array[offset] = this.r; array[offset + 1] = this.g; array[offset + 2] = this.b; return array; } fromBufferAttribute(attribute, index) { this.r = attribute.getX(index); this.g = attribute.getY(index); this.b = attribute.getZ(index); if (attribute.normalized === true) { // assuming Uint8Array this.r /= 255; this.g /= 255; this.b /= 255; } return this; } toJSON() { return this.getHex(); } } Color.NAMES = _colorKeywords; Color.prototype.isColor = true; Color.prototype.r = 1; Color.prototype.g = 1; Color.prototype.b = 1; let _canvas; class ImageUtils { static getDataURL(image) { if (/^data:/i.test(image.src)) { return image.src; } if (typeof HTMLCanvasElement == "undefined") { return image.src; } let canvas; if (image instanceof HTMLCanvasElement) { canvas = image; } else { if (_canvas === undefined) _canvas = createElementNS("canvas"); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext("2d"); if (image instanceof ImageData) { context.putImageData(image, 0, 0); } else { context.drawImage(image, 0, 0, image.width, image.height); } canvas = _canvas; } if (canvas.width > 2048 || canvas.height > 2048) { console.warn("THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons", image); return canvas.toDataURL("image/jpeg", 0.6); } else { return canvas.toDataURL("image/png"); } } static sRGBToLinear(image) { if (typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement || typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap) { const canvas = createElementNS("canvas"); canvas.width = image.width; canvas.height = image.height; const context = canvas.getContext("2d"); context.drawImage(image, 0, 0, image.width, image.height); const imageData = context.getImageData(0, 0, image.width, image.height); const data = imageData.data; for (let i = 0; i < data.length; i++) { data[i] = SRGBToLinear(data[i] / 255) * 255; } context.putImageData(imageData, 0, 0); return canvas; } else if (image.data) { const data = image.data.slice(0); for (let i = 0; i < data.length; i++) { if (data instanceof Uint8Array || data instanceof Uint8ClampedArray) { data[i] = Math.floor(SRGBToLinear(data[i] / 255) * 255); } else { // assuming float data[i] = SRGBToLinear(data[i]); } } return { data: data, width: image.width, height: image.height }; } else { console.warn("THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied."); return image; } } } let textureId = 0; class Texture extends EventDispatcher { constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) { super(); Object.defineProperty(this, "id", { value: textureId++ }); this.uuid = generateUUID(); this.name = ""; this.image = image; this.mipmaps = []; this.mapping = mapping; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2(0, 0); this.repeat = new Vector2(1, 1); this.center = new Vector2(0, 0); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding; this.userData = {}; this.version = 0; this.onUpdate = null; this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not this.needsPMREMUpdate = false; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures) } updateMatrix() { this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y); } clone() { return new this.constructor().copy(this); } copy(source) { this.name = source.name; this.image = source.image; this.mipmaps = source.mipmaps.slice(0); this.mapping = source.mapping; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy(source.offset); this.repeat.copy(source.repeat); this.center.copy(source.center); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy(source.matrix); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.encoding = source.encoding; this.userData = JSON.parse(JSON.stringify(source.userData)); return this; } toJSON(meta) { const isRootObject = meta === undefined || typeof meta === "string"; if (!isRootObject && meta.textures[this.uuid] !== undefined) { return meta.textures[this.uuid]; } const output = { metadata: { version: 4.5, type: "Texture", generator: "Texture.toJSON" }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [this.repeat.x, this.repeat.y], offset: [this.offset.x, this.offset.y], center: [this.center.x, this.center.y], rotation: this.rotation, wrap: [this.wrapS, this.wrapT], format: this.format, type: this.type, encoding: this.encoding, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if (this.image !== undefined) { // TODO: Move to THREE.Image const image = this.image; if (image.uuid === undefined) { image.uuid = generateUUID(); // UGH } if (!isRootObject && meta.images[image.uuid] === undefined) { let url; if (Array.isArray(image)) { // process array of images e.g. CubeTexture url = []; for (let i = 0, l = image.length; i < l; i++) { // check cube texture with data textures if (image[i].isDataTexture) { url.push(serializeImage(image[i].image)); } else { url.push(serializeImage(image[i])); } } } else { // process single image url = serializeImage(image); } meta.images[image.uuid] = { uuid: image.uuid, url: url }; } output.image = image.uuid; } if (JSON.stringify(this.userData) !== "{}") output.userData = this.userData; if (!isRootObject) { meta.textures[this.uuid] = output; } return output; } dispose() { this.dispatchEvent({ type: "dispose" }); } transformUv(uv) { if (this.mapping !== UVMapping) return uv; uv.applyMatrix3(this.matrix); if (uv.x < 0 || uv.x > 1) { switch (this.wrapS) { case RepeatWrapping: uv.x = uv.x - Math.floor(uv.x); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.x) % 2) === 1) { uv.x = Math.ceil(uv.x) - uv.x; } else { uv.x = uv.x - Math.floor(uv.x); } break; } } if (uv.y < 0 || uv.y > 1) { switch (this.wrapT) { case RepeatWrapping: uv.y = uv.y - Math.floor(uv.y); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.y) % 2) === 1) { uv.y = Math.ceil(uv.y) - uv.y; } else { uv.y = uv.y - Math.floor(uv.y); } break; } } if (this.flipY) { uv.y = 1 - uv.y; } return uv; } set needsUpdate(value) { if (value === true) this.version++; } } Texture.DEFAULT_IMAGE = undefined; Texture.DEFAULT_MAPPING = UVMapping; Texture.prototype.isTexture = true; function serializeImage(image) { if (typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement || typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap) { // default images return ImageUtils.getDataURL(image); } else { if (image.data) { // images of DataTexture return { data: Array.prototype.slice.call(image.data), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn("THREE.Texture: Unable to serialize Texture."); return {}; } } } class Vector4 { constructor(x = 0, y = 0, z = 0, w = 1) { this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width(value) { this.z = value; } get height() { return this.w; } set height(value) { this.w = value; } set(x, y, z, w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setZ(z) { this.z = z; return this; } setW(w) { this.w = w; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error("index is out of range: " + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error("index is out of range: " + index); } } clone() { return new this.constructor(this.x, this.y, this.z, this.w); } copy(v) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = v.w !== undefined ? v.w : 1; return this; } add(v, w) { if (w !== undefined) { console.warn("THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead."); return this.addVectors(v, w); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar(s) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub(v, w) { if (w !== undefined) { console.warn("THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."); return this.subVectors(v, w); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar(s) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w; this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w; this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w; this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } setAxisAngleFromQuaternion(q) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos(q.w); const s = Math.sqrt(1 - q.w * q.w); if (s < 0.0001) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix(m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10]; if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) { // this singularity is identity matrix so angle = 0 this.set(1, 0, 0, 0); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = (m11 + 1) / 2; const yy = (m22 + 1) / 2; const zz = (m33 + 1) / 2; const xy = (m12 + m21) / 4; const xz = (m13 + m31) / 4; const yz = (m23 + m32) / 4; if (xx > yy && xx > zz) { // m11 is the largest diagonal term if (xx < epsilon) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt(xx); y = xy / x; z = xz / x; } } else if (yy > zz) { // m22 is the largest diagonal term if (yy < epsilon) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt(yy); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if (zz < epsilon) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } } this.set(x, y, z, angle); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I"ve left it in just in case this.x = (m32 - m23) / s; this.y = (m13 - m31) / s; this.z = (m21 - m12) / s; this.w = Math.acos((m11 + m22 + m33 - 1) / 2); return this; } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); this.z = Math.min(this.z, v.z); this.w = Math.min(this.w, v.w); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); this.z = Math.max(this.z, v.z); this.w = Math.max(this.w, v.w); return this; } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)); this.y = Math.max(min.y, Math.min(max.y, this.y)); this.z = Math.max(min.z, Math.min(max.z, this.z)); this.w = Math.max(min.w, Math.min(max.w, this.w)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); this.z = Math.max(minVal, Math.min(maxVal, this.z)); this.w = Math.max(minVal, Math.min(maxVal, this.w)); return this; } clampLength(min, max) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); this.z = Math.floor(this.z); this.w = Math.floor(this.w); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); this.z = Math.ceil(this.z); this.w = Math.ceil(this.w); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); this.z = Math.round(this.z); this.w = Math.round(this.w); return this; } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w); return this; } negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; this.w = -this.w; return this; } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w); } normalize() { return this.divideScalar(this.length() || 1); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; this.w += (v.w - this.w) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; this.z = v1.z + (v2.z - v1.z) * alpha; this.w = v1.w + (v2.w - v1.w) * alpha; return this; } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; this.w = array[offset + 3]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; array[offset + 3] = this.w; return array; } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn("THREE.Vector4: offset has been removed from .fromBufferAttribute()."); } this.x = attribute.getX(index); this.y = attribute.getY(index); this.z = attribute.getZ(index); this.w = attribute.getW(index); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } *[Symbol.iterator]() { yield this.x; yield this.y; yield this.z; yield this.w; } } Vector4.prototype.isVector4 = true; /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class WebGLRenderTarget extends EventDispatcher { constructor(width, height, options = {}) { super(); this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4(0, 0, width, height); this.scissorTest = false; this.viewport = new Vector4(0, 0, width, height); this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); this.texture.isRenderTargetTexture = true; this.texture.image = { width: width, height: height, depth: 1 }; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false; this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; } setTexture(texture) { texture.image = { width: this.width, height: this.height, depth: this.depth }; this.texture = texture; } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width; this.height = height; this.depth = depth; this.texture.image.width = width; this.texture.image.height = height; this.texture.image.depth = depth; this.dispose(); } this.viewport.set(0, 0, width, height); this.scissor.set(0, 0, width, height); } clone() { return new this.constructor().copy(this); } copy(source) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.copy(source.viewport); this.texture = source.texture.clone(); // ensure image object is not shared, see #20328 this.texture.image = Object.assign({}, source.texture.image); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; return this; } dispose() { this.dispatchEvent({ type: "dispose" }); } } WebGLRenderTarget.prototype.isWebGLRenderTarget = true; class WebGLMultipleRenderTargets extends WebGLRenderTarget { constructor(width, height, count) { super(width, height); const texture = this.texture; this.texture = []; for (let i = 0; i < count; i++) { this.texture[i] = texture.clone(); } } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width; this.height = height; this.depth = depth; for (let i = 0, il = this.texture.length; i < il; i++) { this.texture[i].image.width = width; this.texture[i].image.height = height; this.texture[i].image.depth = depth; } this.dispose(); } this.viewport.set(0, 0, width, height); this.scissor.set(0, 0, width, height); return this; } copy(source) { this.dispose(); this.width = source.width; this.height = source.height; this.depth = source.depth; this.viewport.set(0, 0, this.width, this.height); this.scissor.set(0, 0, this.width, this.height); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.depthTexture = source.depthTexture; this.texture.length = 0; for (let i = 0, il = source.texture.length; i < il; i++) { this.texture[i] = source.texture[i].clone(); } return this; } } WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true; class WebGLMultisampleRenderTarget extends WebGLRenderTarget { constructor(width, height, options = {}) { super(width, height, options); this.samples = 4; this.ignoreDepthForMultisampleCopy = options.ignoreDepth !== undefined ? options.ignoreDepth : true; this.useRenderToTexture = options.useRenderToTexture !== undefined ? options.useRenderToTexture : false; this.useRenderbuffer = this.useRenderToTexture === false; } copy(source) { super.copy.call(this, source); this.samples = source.samples; this.useRenderToTexture = source.useRenderToTexture; this.useRenderbuffer = source.useRenderbuffer; return this; } } WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true; class Quaternion { constructor(x = 0, y = 0, z = 0, w = 1) { this._x = x; this._y = y; this._z = z; this._w = w; } static slerp(qa, qb, qm, t) { console.warn("THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead."); return qm.slerpQuaternions(qa, qb, t); } static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3]; const x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3]; if (t === 0) { dst[dstOffset + 0] = x0; dst[dstOffset + 1] = y0; dst[dstOffset + 2] = z0; dst[dstOffset + 3] = w0; return; } if (t === 1) { dst[dstOffset + 0] = x1; dst[dstOffset + 1] = y1; dst[dstOffset + 2] = z1; dst[dstOffset + 3] = w1; return; } if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = cos >= 0 ? 1 : -1, sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if (sqrSin > Number.EPSILON) { const sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir); s = Math.sin(s * len) / sin; t = Math.sin(t * len) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if (s === 1 - t) { const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[dstOffset] = x0; dst[dstOffset + 1] = y0; dst[dstOffset + 2] = z0; dst[dstOffset + 3] = w0; } static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) { const x0 = src0[srcOffset0]; const y0 = src0[srcOffset0 + 1]; const z0 = src0[srcOffset0 + 2]; const w0 = src0[srcOffset0 + 3]; const x1 = src1[srcOffset1]; const y1 = src1[srcOffset1 + 1]; const z1 = src1[srcOffset1 + 2]; const w1 = src1[srcOffset1 + 3]; dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x(value) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y(value) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z(value) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w(value) { this._w = value; this._onChangeCallback(); } set(x, y, z, w) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor(this._x, this._y, this._z, this._w); } copy(quaternion) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler(euler, update) { if (!(euler && euler.isEuler)) { throw new Error("THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order."); } const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos(x / 2); const c2 = cos(y / 2); const c3 = cos(z / 2); const s1 = sin(x / 2); const s2 = sin(y / 2); const s3 = sin(z / 2); switch (order) { case "XYZ": this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case "YXZ": this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case "ZXY": this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case "ZYX": this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case "YZX": this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case "XZY": this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn("THREE.Quaternion: .setFromEuler() encountered an unknown order: " + order); } if (update !== false) this._onChangeCallback(); return this; } setFromAxisAngle(axis, angle) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin(halfAngle); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos(halfAngle); this._onChangeCallback(); return this; } setFromRotationMatrix(m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33; if (trace > 0) { const s = 0.5 / Math.sqrt(trace + 1.0); this._w = 0.25 / s; this._x = (m32 - m23) * s; this._y = (m13 - m31) * s; this._z = (m21 - m12) * s; } else if (m11 > m22 && m11 > m33) { const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33); this._w = (m32 - m23) / s; this._x = 0.25 * s; this._y = (m12 + m21) / s; this._z = (m13 + m31) / s; } else if (m22 > m33) { const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33); this._w = (m13 - m31) / s; this._x = (m12 + m21) / s; this._y = 0.25 * s; this._z = (m23 + m32) / s; } else { const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22); this._w = (m21 - m12) / s; this._x = (m13 + m31) / s; this._y = (m23 + m32) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors(vFrom, vTo) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot(vTo) + 1; if (r < Number.EPSILON) { // vFrom and vTo point in opposite directions r = 0; if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { this._x = -vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = -vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo(q) { return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1))); } rotateTowards(q, step) { const angle = this.angleTo(q); if (angle === 0) return this; const t = Math.min(1, step / angle); this.slerp(q, t); return this; } identity() { return this.set(0, 0, 0, 1); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= -1; this._y *= -1; this._z *= -1; this._onChangeCallback(); return this; } dot(v) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w); } normalize() { let l = this.length(); if (l === 0) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply(q, p) { if (p !== undefined) { console.warn("THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead."); return this.multiplyQuaternions(q, p); } return this.multiplyQuaternions(this, q); } premultiply(q) { return this.multiplyQuaternions(q, this); } multiplyQuaternions(a, b) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp(qb, t) { if (t === 0) return this; if (t === 1) return this.copy(qb); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if (cosHalfTheta < 0) { this._w = -qb._w; this._x = -qb._x; this._y = -qb._y; this._z = -qb._z; cosHalfTheta = -cosHalfTheta; } else { this.copy(qb); } if (cosHalfTheta >= 1.0) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if (sqrSinHalfTheta <= Number.EPSILON) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); this._onChangeCallback(); return this; } const sinHalfTheta = Math.sqrt(sqrSinHalfTheta); const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta); const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta; this._w = w * ratioA + this._w * ratioB; this._x = x * ratioA + this._x * ratioB; this._y = y * ratioA + this._y * ratioB; this._z = z * ratioA + this._z * ratioB; this._onChangeCallback(); return this; } slerpQuaternions(qa, qb, t) { return this.copy(qa).slerp(qb, t); } random() { // Derived from http://planning.cs.uiuc.edu/node198.html // Note, this source uses w, x, y, z ordering, // so we swap the order below. const u1 = Math.random(); const sqrt1u1 = Math.sqrt(1 - u1); const sqrtu1 = Math.sqrt(u1); const u2 = 2 * Math.PI * Math.random(); const u3 = 2 * Math.PI * Math.random(); return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2)); } equals(quaternion) { return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w; } fromArray(array, offset = 0) { this._x = array[offset]; this._y = array[offset + 1]; this._z = array[offset + 2]; this._w = array[offset + 3]; this._onChangeCallback(); return this; } toArray(array = [], offset = 0) { array[offset] = this._x; array[offset + 1] = this._y; array[offset + 2] = this._z; array[offset + 3] = this._w; return array; } fromBufferAttribute(attribute, index) { this._x = attribute.getX(index); this._y = attribute.getY(index); this._z = attribute.getZ(index); this._w = attribute.getW(index); return this; } _onChange(callback) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} } Quaternion.prototype.isQuaternion = true; class Vector3 { constructor(x = 0, y = 0, z = 0) { this.x = x; this.y = y; this.z = z; } set(x, y, z) { if (z === undefined) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setZ(z) { this.z = z; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error("index is out of range: " + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error("index is out of range: " + index); } } clone() { return new this.constructor(this.x, this.y, this.z); } copy(v) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add(v, w) { if (w !== undefined) { console.warn("THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead."); return this.addVectors(v, w); } this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar(s) { this.x += s; this.y += s; this.z += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub(v, w) { if (w !== undefined) { console.warn("THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."); return this.subVectors(v, w); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar(s) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply(v, w) { if (w !== undefined) { console.warn("THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead."); return this.multiplyVectors(v, w); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors(a, b) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler(euler) { if (!(euler && euler.isEuler)) { console.error("THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order."); } return this.applyQuaternion(_quaternion$4.setFromEuler(euler)); } applyAxisAngle(axis, angle) { return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle)); } applyMatrix3(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[0] * x + e[3] * y + e[6] * z; this.y = e[1] * x + e[4] * y + e[7] * z; this.z = e[2] * x + e[5] * y + e[8] * z; return this; } applyNormalMatrix(m) { return this.applyMatrix3(m).normalize(); } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]); this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w; this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w; this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w; return this; } applyQuaternion(q) { const x = this.x, y = this.y, z = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // calculate quat * vector const ix = qw * x + qy * z - qz * y; const iy = qw * y + qz * x - qx * z; const iz = qw * z + qx * y - qy * x; const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return this; } project(camera) { return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix); } unproject(camera) { return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld); } transformDirection(m) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z; this.y = e[1] * x + e[5] * y + e[9] * z; this.z = e[2] * x + e[6] * y + e[10] * z; return this.normalize(); } divide(v) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); this.z = Math.min(this.z, v.z); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); this.z = Math.max(this.z, v.z); return this; } clamp(min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)); this.y = Math.max(min.y, Math.min(max.y, this.y)); this.z = Math.max(min.z, Math.min(max.z, this.z)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); this.z = Math.max(minVal, Math.min(maxVal, this.z)); return this; } clampLength(min, max) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); this.z = Math.floor(this.z); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); this.z = Math.ceil(this.z); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); this.z = Math.round(this.z); return this; } roundToZero() { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x); this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y); this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z); return this; } negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; return this; } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z); } normalize() { return this.divideScalar(this.length() || 1); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; this.z = v1.z + (v2.z - v1.z) * alpha; return this; } cross(v, w) { if (w !== undefined) { console.warn("THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead."); return this.crossVectors(v, w); } return this.crossVectors(this, v); } crossVectors(a, b) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector(v) { const denominator = v.lengthSq(); if (denominator === 0) return this.set(0, 0, 0); const scalar = v.dot(this) / denominator; return this.copy(v).multiplyScalar(scalar); } projectOnPlane(planeNormal) { _vector$c.copy(this).projectOnVector(planeNormal); return this.sub(_vector$c); } reflect(normal) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal))); } angleTo(v) { const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()); if (denominator === 0) return Math.PI / 2; const theta = this.dot(v) / denominator; // clamp, to handle numerical problems return Math.acos(clamp(theta, -1, 1)); } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)); } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z); } setFromSpherical(s) { return this.setFromSphericalCoords(s.radius, s.phi, s.theta); } setFromSphericalCoords(radius, phi, theta) { const sinPhiRadius = Math.sin(phi) * radius; this.x = sinPhiRadius * Math.sin(theta); this.y = Math.cos(phi) * radius; this.z = sinPhiRadius * Math.cos(theta); return this; } setFromCylindrical(c) { return this.setFromCylindricalCoords(c.radius, c.theta, c.y); } setFromCylindricalCoords(radius, theta, y) { this.x = radius * Math.sin(theta); this.y = y; this.z = radius * Math.cos(theta); return this; } setFromMatrixPosition(m) { const e = m.elements; this.x = e[12]; this.y = e[13]; this.z = e[14]; return this; } setFromMatrixScale(m) { const sx = this.setFromMatrixColumn(m, 0).length(); const sy = this.setFromMatrixColumn(m, 1).length(); const sz = this.setFromMatrixColumn(m, 2).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn(m, index) { return this.fromArray(m.elements, index * 4); } setFromMatrix3Column(m, index) { return this.fromArray(m.elements, index * 3); } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; return array; } fromBufferAttribute(attribute, index, offset) { if (offset !== undefined) { console.warn("THREE.Vector3: offset has been removed from .fromBufferAttribute()."); } this.x = attribute.getX(index); this.y = attribute.getY(index); this.z = attribute.getZ(index); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } randomDirection() { // Derived from https://mathworld.wolfram.com/SpherePointPicking.html const u = (Math.random() - 0.5) * 2; const t = Math.random() * Math.PI * 2; const f = Math.sqrt(1 - u ** 2); this.x = f * Math.cos(t); this.y = f * Math.sin(t); this.z = u; return this; } *[Symbol.iterator]() { yield this.x; yield this.y; yield this.z; } } Vector3.prototype.isVector3 = true; const _vector$c = /*@__PURE__*/new Vector3(); const _quaternion$4 = /*@__PURE__*/new Quaternion(); class Box3 { constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) { this.min = min; this.max = max; } set(min, max) { this.min.copy(min); this.max.copy(max); return this; } setFromArray(array) { let minX = +Infinity; let minY = +Infinity; let minZ = +Infinity; let maxX = -Infinity; let maxY = -Infinity; let maxZ = -Infinity; for (let i = 0, l = array.length; i < l; i += 3) { const x = array[i]; const y = array[i + 1]; const z = array[i + 2]; if (x < minX) minX = x; if (y < minY) minY = y; if (z < minZ) minZ = z; if (x > maxX) maxX = x; if (y > maxY) maxY = y; if (z > maxZ) maxZ = z; } this.min.set(minX, minY, minZ); this.max.set(maxX, maxY, maxZ); return this; } setFromBufferAttribute(attribute) { let minX = +Infinity; let minY = +Infinity; let minZ = +Infinity; let maxX = -Infinity; let maxY = -Infinity; let maxZ = -Infinity; for (let i = 0, l = attribute.count; i < l; i++) { const x = attribute.getX(i); const y = attribute.getY(i); const z = attribute.getZ(i); if (x < minX) minX = x; if (y < minY) minY = y; if (z < minZ) minZ = z; if (x > maxX) maxX = x; if (y > maxY) maxY = y; if (z > maxZ) maxZ = z; } this.min.set(minX, minY, minZ); this.max.set(maxX, maxY, maxZ); return this; } setFromPoints(points) { this.makeEmpty(); for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]); } return this; } setFromCenterAndSize(center, size) { const halfSize = _vector$b.copy(size).multiplyScalar(0.5); this.min.copy(center).sub(halfSize); this.max.copy(center).add(halfSize); return this; } setFromObject(object, precise = false) { this.makeEmpty(); return this.expandByObject(object, precise); } clone() { return new this.constructor().copy(this); } copy(box) { this.min.copy(box.min); this.max.copy(box.max); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = +Infinity; this.max.x = this.max.y = this.max.z = -Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z; } getCenter(target) { return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); } getSize(target) { return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min); } expandByPoint(point) { this.min.min(point); this.max.max(point); return this; } expandByVector(vector) { this.min.sub(vector); this.max.add(vector); return this; } expandByScalar(scalar) { this.min.addScalar(-scalar); this.max.addScalar(scalar); return this; } expandByObject(object, precise = false) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object"s, and children"s, world transforms object.updateWorldMatrix(false, false); const geometry = object.geometry; if (geometry !== undefined) { if (precise && geometry.attributes != undefined && geometry.attributes.position !== undefined) { const position = geometry.attributes.position; for (let i = 0, l = position.count; i < l; i++) { _vector$b.fromBufferAttribute(position, i).applyMatrix4(object.matrixWorld); this.expandByPoint(_vector$b); } } else { if (geometry.boundingBox === null) { geometry.computeBoundingBox(); } _box$3.copy(geometry.boundingBox); _box$3.applyMatrix4(object.matrixWorld); this.union(_box$3); } } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { this.expandByObject(children[i], precise); } return this; } containsPoint(point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter(point, target) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z)); } intersectsBox(box) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; } intersectsSphere(sphere) { // Find the point on the AABB closest to the sphere center. this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius; } intersectsPlane(plane) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if (plane.normal.x > 0) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if (plane.normal.y > 0) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if (plane.normal.z > 0) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return min <= -plane.constant && max >= -plane.constant; } intersectsTriangle(triangle) { if (this.isEmpty()) { return false; } // compute box center and extents this.getCenter(_center); _extents.subVectors(this.max, _center); // translate triangle to aabb origin _v0$2.subVectors(triangle.a, _center); _v1$7.subVectors(triangle.b, _center); _v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle _f0.subVectors(_v1$7, _v0$2); _f1.subVectors(_v2$3, _v1$7); _f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0]; if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { return false; } // test 3 face normals from the aabb axes = [1, 0, 0, 0, 1, 0, 0, 0, 1]; if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors(_f0, _f1); axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z]; return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents); } clampPoint(point, target) { return target.copy(point).clamp(this.min, this.max); } distanceToPoint(point) { const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max); return clampedPoint.sub(point).length(); } getBoundingSphere(target) { this.getCenter(target.center); target.radius = this.getSize(_vector$b).length() * 0.5; return target; } intersect(box) { this.min.max(box.min); this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if (this.isEmpty()) this.makeEmpty(); return this; } union(box) { this.min.min(box.min); this.max.max(box.max); return this; } applyMatrix4(matrix) { // transform of empty box is an empty box. if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000 _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001 _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010 _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011 _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100 _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101 _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110 _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111 this.setFromPoints(_points); return this; } translate(offset) { this.min.add(offset); this.max.add(offset); return this; } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max); } } Box3.prototype.isBox3 = true; const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()]; const _vector$b = /*@__PURE__*/new Vector3(); const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices const _v0$2 = /*@__PURE__*/new Vector3(); const _v1$7 = /*@__PURE__*/new Vector3(); const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/new Vector3(); const _f1 = /*@__PURE__*/new Vector3(); const _f2 = /*@__PURE__*/new Vector3(); const _center = /*@__PURE__*/new Vector3(); const _extents = /*@__PURE__*/new Vector3(); const _triangleNormal = /*@__PURE__*/new Vector3(); const _testAxis = /*@__PURE__*/new Vector3(); function satForAxes(axes, v0, v1, v2, extents) { for (let i = 0, j = axes.length - 3; i <= j; i += 3) { _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis const p0 = v0.dot(_testAxis); const p1 = v1.dot(_testAxis); const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false; } } return true; } const _box$2 = /*@__PURE__*/new Box3(); const _v1$6 = /*@__PURE__*/new Vector3(); const _toFarthestPoint = /*@__PURE__*/new Vector3(); const _toPoint = /*@__PURE__*/new Vector3(); class Sphere { constructor(center = new Vector3(), radius = -1) { this.center = center; this.radius = radius; } set(center, radius) { this.center.copy(center); this.radius = radius; return this; } setFromPoints(points, optionalCenter) { const center = this.center; if (optionalCenter !== undefined) { center.copy(optionalCenter); } else { _box$2.setFromPoints(points).getCenter(center); } let maxRadiusSq = 0; for (let i = 0, il = points.length; i < il; i++) { maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])); } this.radius = Math.sqrt(maxRadiusSq); return this; } copy(sphere) { this.center.copy(sphere.center); this.radius = sphere.radius; return this; } isEmpty() { return this.radius < 0; } makeEmpty() { this.center.set(0, 0, 0); this.radius = -1; return this; } containsPoint(point) { return point.distanceToSquared(this.center) <= this.radius * this.radius; } distanceToPoint(point) { return point.distanceTo(this.center) - this.radius; } intersectsSphere(sphere) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum; } intersectsBox(box) { return box.intersectsSphere(this); } intersectsPlane(plane) { return Math.abs(plane.distanceToPoint(this.center)) <= this.radius; } clampPoint(point, target) { const deltaLengthSq = this.center.distanceToSquared(point); target.copy(point); if (deltaLengthSq > this.radius * this.radius) { target.sub(this.center).normalize(); target.multiplyScalar(this.radius).add(this.center); } return target; } getBoundingBox(target) { if (this.isEmpty()) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set(this.center, this.center); target.expandByScalar(this.radius); return target; } applyMatrix4(matrix) { this.center.applyMatrix4(matrix); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate(offset) { this.center.add(offset); return this; } expandByPoint(point) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671 _toPoint.subVectors(point, this.center); const lengthSq = _toPoint.lengthSq(); if (lengthSq > this.radius * this.radius) { const length = Math.sqrt(lengthSq); const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius, // and the other half to position. This gives a tighter enclosure, instead of if // the whole missing distance were just added to radius. this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length)); this.radius += missingRadiusHalf; } return this; } union(sphere) { // from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769 // To enclose another sphere into this sphere, we only need to enclose two points: // 1) Enclose the farthest point on the other sphere into this sphere. // 2) Enclose the opposite point of the farthest point into this sphere. if (this.center.equals(sphere.center) === true) { _toFarthestPoint.set(0, 0, 1).multiplyScalar(sphere.radius); } else { _toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius); } this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint)); this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint)); return this; } equals(sphere) { return sphere.center.equals(this.center) && sphere.radius === this.radius; } clone() { return new this.constructor().copy(this); } } const _vector$a = /*@__PURE__*/new Vector3(); const _segCenter = /*@__PURE__*/new Vector3(); const _segDir = /*@__PURE__*/new Vector3(); const _diff = /*@__PURE__*/new Vector3(); const _edge1 = /*@__PURE__*/new Vector3(); const _edge2 = /*@__PURE__*/new Vector3(); const _normal$1 = /*@__PURE__*/new Vector3(); class Ray { constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) { this.origin = origin; this.direction = direction; } set(origin, direction) { this.origin.copy(origin); this.direction.copy(direction); return this; } copy(ray) { this.origin.copy(ray.origin); this.direction.copy(ray.direction); return this; } at(t, target) { return target.copy(this.direction).multiplyScalar(t).add(this.origin); } lookAt(v) { this.direction.copy(v).sub(this.origin).normalize(); return this; } recast(t) { this.origin.copy(this.at(t, _vector$a)); return this; } closestPointToPoint(point, target) { target.subVectors(point, this.origin); const directionDistance = target.dot(this.direction); if (directionDistance < 0) { return target.copy(this.origin); } return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); } distanceToPoint(point) { return Math.sqrt(this.distanceSqToPoint(point)); } distanceSqToPoint(point) { const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray if (directionDistance < 0) { return this.origin.distanceToSquared(point); } _vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin); return _vector$a.distanceToSquared(point); } distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy(v0).add(v1).multiplyScalar(0.5); _segDir.copy(v1).sub(v0).normalize(); _diff.copy(this.origin).sub(_segCenter); const segExtent = v0.distanceTo(v1) * 0.5; const a01 = -this.direction.dot(_segDir); const b0 = _diff.dot(this.direction); const b1 = -_diff.dot(_segDir); const c = _diff.lengthSq(); const det = Math.abs(1 - a01 * a01); let s0, s1, sqrDist, extDet; if (det > 0) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if (s0 >= 0) { if (s1 >= -extDet) { if (s1 <= extDet) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c; } else { // region 1 s1 = segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } else { // region 5 s1 = -segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } else { if (s1 <= -extDet) { // region 4 s0 = Math.max(0, -(-a01 * segExtent + b0)); s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } else if (s1 <= extDet) { // region 3 s0 = 0; s1 = Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = s1 * (s1 + 2 * b1) + c; } else { // region 2 s0 = Math.max(0, -(a01 * segExtent + b0)); s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } } else { // Ray and segment are parallel. s1 = a01 > 0 ? -segExtent : segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } if (optionalPointOnRay) { optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin); } if (optionalPointOnSegment) { optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter); } return sqrDist; } intersectSphere(sphere, target) { _vector$a.subVectors(sphere.center, this.origin); const tca = _vector$a.dot(this.direction); const d2 = _vector$a.dot(_vector$a) - tca * tca; const radius2 = sphere.radius * sphere.radius; if (d2 > radius2) return null; const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at(t0, target); } intersectsSphere(sphere) { return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius; } distanceToPlane(plane) { const denominator = plane.normal.dot(this.direction); if (denominator === 0) { // line is coplanar, return origin if (plane.distanceToPoint(this.origin) === 0) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; } intersectPlane(plane, target) { const t = this.distanceToPlane(plane); if (t === null) { return null; } return this.at(t, target); } intersectsPlane(plane) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint(this.origin); if (distToPoint === 0) { return true; } const denominator = plane.normal.dot(this.direction); if (denominator * distToPoint < 0) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; } intersectBox(box, target) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if (invdirx >= 0) { tmin = (box.min.x - origin.x) * invdirx; tmax = (box.max.x - origin.x) * invdirx; } else { tmin = (box.max.x - origin.x) * invdirx; tmax = (box.min.x - origin.x) * invdirx; } if (invdiry >= 0) { tymin = (box.min.y - origin.y) * invdiry; tymax = (box.max.y - origin.y) * invdiry; } else { tymin = (box.max.y - origin.y) * invdiry; tymax = (box.min.y - origin.y) * invdiry; } if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if (tymin > tmin || tmin !== tmin) tmin = tymin; if (tymax < tmax || tmax !== tmax) tmax = tymax; if (invdirz >= 0) { tzmin = (box.min.z - origin.z) * invdirz; tzmax = (box.max.z - origin.z) * invdirz; } else { tzmin = (box.max.z - origin.z) * invdirz; tzmax = (box.min.z - origin.z) * invdirz; } if (tmin > tzmax || tzmin > tmax) return null; if (tzmin > tmin || tmin !== tmin) tmin = tzmin; if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side) if (tmax < 0) return null; return this.at(tmin >= 0 ? tmin : tmax, target); } intersectsBox(box) { return this.intersectBox(box, _vector$a) !== null; } intersectTriangle(a, b, c, backfaceCulling, target) { // Compute the offset origin, edges, and normal. // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors(b, a); _edge2.subVectors(c, a); _normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot(_normal$1); let sign; if (DdN > 0) { if (backfaceCulling) return null; sign = 1; } else if (DdN < 0) { sign = -1; DdN = -DdN; } else { return null; } _diff.subVectors(this.origin, a); const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection if (DdQxE2 < 0) { return null; } const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection if (DdE1xQ < 0) { return null; } // b1+b2 > 1, no intersection if (DdQxE2 + DdE1xQ > DdN) { return null; } // Line intersects triangle, check if ray does. const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection if (QdN < 0) { return null; } // Ray intersects triangle. return this.at(QdN / DdN, target); } applyMatrix4(matrix4) { this.origin.applyMatrix4(matrix4); this.direction.transformDirection(matrix4); return this; } equals(ray) { return ray.origin.equals(this.origin) && ray.direction.equals(this.direction); } clone() { return new this.constructor().copy(this); } } class Matrix4 { constructor() { this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]; if (arguments.length > 0) { console.error("THREE.Matrix4: the constructor no longer reads arguments. use .set() instead."); } } set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { const te = this.elements; te[0] = n11; te[4] = n12; te[8] = n13; te[12] = n14; te[1] = n21; te[5] = n22; te[9] = n23; te[13] = n24; te[2] = n31; te[6] = n32; te[10] = n33; te[14] = n34; te[3] = n41; te[7] = n42; te[11] = n43; te[15] = n44; return this; } identity() { this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); return this; } clone() { return new Matrix4().fromArray(this.elements); } copy(m) { const te = this.elements; const me = m.elements; te[0] = me[0]; te[1] = me[1]; te[2] = me[2]; te[3] = me[3]; te[4] = me[4]; te[5] = me[5]; te[6] = me[6]; te[7] = me[7]; te[8] = me[8]; te[9] = me[9]; te[10] = me[10]; te[11] = me[11]; te[12] = me[12]; te[13] = me[13]; te[14] = me[14]; te[15] = me[15]; return this; } copyPosition(m) { const te = this.elements, me = m.elements; te[12] = me[12]; te[13] = me[13]; te[14] = me[14]; return this; } setFromMatrix3(m) { const me = m.elements; this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1); return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrixColumn(this, 0); yAxis.setFromMatrixColumn(this, 1); zAxis.setFromMatrixColumn(this, 2); return this; } makeBasis(xAxis, yAxis, zAxis) { this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1); return this; } extractRotation(m) { // this method does not support reflection matrices const te = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length(); te[0] = me[0] * scaleX; te[1] = me[1] * scaleX; te[2] = me[2] * scaleX; te[3] = 0; te[4] = me[4] * scaleY; te[5] = me[5] * scaleY; te[6] = me[6] * scaleY; te[7] = 0; te[8] = me[8] * scaleZ; te[9] = me[9] * scaleZ; te[10] = me[10] * scaleZ; te[11] = 0; te[12] = 0; te[13] = 0; te[14] = 0; te[15] = 1; return this; } makeRotationFromEuler(euler) { if (!(euler && euler.isEuler)) { console.error("THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order."); } const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos(x), b = Math.sin(x); const c = Math.cos(y), d = Math.sin(y); const e = Math.cos(z), f = Math.sin(z); if (euler.order === "XYZ") { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = -c * f; te[8] = d; te[1] = af + be * d; te[5] = ae - bf * d; te[9] = -b * c; te[2] = bf - ae * d; te[6] = be + af * d; te[10] = a * c; } else if (euler.order === "YXZ") { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce + df * b; te[4] = de * b - cf; te[8] = a * d; te[1] = a * f; te[5] = a * e; te[9] = -b; te[2] = cf * b - de; te[6] = df + ce * b; te[10] = a * c; } else if (euler.order === "ZXY") { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce - df * b; te[4] = -a * f; te[8] = de + cf * b; te[1] = cf + de * b; te[5] = a * e; te[9] = df - ce * b; te[2] = -a * d; te[6] = b; te[10] = a * c; } else if (euler.order === "ZYX") { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = be * d - af; te[8] = ae * d + bf; te[1] = c * f; te[5] = bf * d + ae; te[9] = af * d - be; te[2] = -d; te[6] = b * c; te[10] = a * c; } else if (euler.order === "YZX") { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = bd - ac * f; te[8] = bc * f + ad; te[1] = f; te[5] = a * e; te[9] = -b * e; te[2] = -d * e; te[6] = ad * f + bc; te[10] = ac - bd * f; } else if (euler.order === "XZY") { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = -f; te[8] = d * e; te[1] = ac * f + bd; te[5] = a * e; te[9] = ad * f - bc; te[2] = bc * f - ad; te[6] = b * e; te[10] = bd * f + ac; } // bottom row te[3] = 0; te[7] = 0; te[11] = 0; // last column te[12] = 0; te[13] = 0; te[14] = 0; te[15] = 1; return this; } makeRotationFromQuaternion(q) { return this.compose(_zero, q, _one); } lookAt(eye, target, up) { const te = this.elements; _z.subVectors(eye, target); if (_z.lengthSq() === 0) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors(up, _z); if (_x.lengthSq() === 0) { // up and z are parallel if (Math.abs(up.z) === 1) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors(up, _z); } _x.normalize(); _y.crossVectors(_z, _x); te[0] = _x.x; te[4] = _y.x; te[8] = _z.x; te[1] = _x.y; te[5] = _y.y; te[9] = _z.y; te[2] = _x.z; te[6] = _y.z; te[10] = _z.z; return this; } multiply(m, n) { if (n !== undefined) { console.warn("THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead."); return this.multiplyMatrices(m, n); } return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12]; const a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13]; const a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14]; const a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15]; const b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12]; const b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13]; const b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14]; const b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15]; te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar(s) { const te = this.elements; te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s; te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s; te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s; te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s; return this; } determinant() { const te = this.elements; const n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12]; const n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13]; const n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14]; const n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31); } transpose() { const te = this.elements; let tmp; tmp = te[1]; te[1] = te[4]; te[4] = tmp; tmp = te[2]; te[2] = te[8]; te[8] = tmp; tmp = te[6]; te[6] = te[9]; te[9] = tmp; tmp = te[3]; te[3] = te[12]; te[12] = tmp; tmp = te[7]; te[7] = te[13]; te[13] = tmp; tmp = te[11]; te[11] = te[14]; te[14] = tmp; return this; } setPosition(x, y, z) { const te = this.elements; if (x.isVector3) { te[12] = x.x; te[13] = x.y; te[14] = x.z; } else { te[12] = x; te[13] = y; te[14] = z; } return this; } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[0], n21 = te[1], n31 = te[2], n41 = te[3], n12 = te[4], n22 = te[5], n32 = te[6], n42 = te[7], n13 = te[8], n23 = te[9], n33 = te[10], n43 = te[11], n14 = te[12], n24 = te[13], n34 = te[14], n44 = te[15], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te[0] = t11 * detInv; te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv; te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv; te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv; te[4] = t12 * detInv; te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv; te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv; te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv; te[8] = t13 * detInv; te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv; te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv; te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv; te[12] = t14 * detInv; te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv; te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv; te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv; return this; } scale(v) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[0] *= x; te[4] *= y; te[8] *= z; te[1] *= x; te[5] *= y; te[9] *= z; te[2] *= x; te[6] *= y; te[10] *= z; te[3] *= x; te[7] *= y; te[11] *= z; return this; } getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2]; const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6]; const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10]; return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)); } makeTranslation(x, y, z) { this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1); return this; } makeRotationX(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); return this; } makeRotationY(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); return this; } makeRotationZ(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); return this; } makeRotationAxis(axis, angle) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos(angle); const s = Math.sin(angle); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1); return this; } makeScale(x, y, z) { this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1); return this; } makeShear(xy, xz, yx, yz, zx, zy) { this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1); return this; } compose(position, quaternion, scale) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[0] = (1 - (yy + zz)) * sx; te[1] = (xy + wz) * sx; te[2] = (xz - wy) * sx; te[3] = 0; te[4] = (xy - wz) * sy; te[5] = (1 - (xx + zz)) * sy; te[6] = (yz + wx) * sy; te[7] = 0; te[8] = (xz + wy) * sz; te[9] = (yz - wx) * sz; te[10] = (1 - (xx + yy)) * sz; te[11] = 0; te[12] = position.x; te[13] = position.y; te[14] = position.z; te[15] = 1; return this; } decompose(position, quaternion, scale) { const te = this.elements; let sx = _v1$5.set(te[0], te[1], te[2]).length(); const sy = _v1$5.set(te[4], te[5], te[6]).length(); const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if (det < 0) sx = -sx; position.x = te[12]; position.y = te[13]; position.z = te[14]; // scale the rotation part _m1$2.copy(this); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$2.elements[0] *= invSX; _m1$2.elements[1] *= invSX; _m1$2.elements[2] *= invSX; _m1$2.elements[4] *= invSY; _m1$2.elements[5] *= invSY; _m1$2.elements[6] *= invSY; _m1$2.elements[8] *= invSZ; _m1$2.elements[9] *= invSZ; _m1$2.elements[10] *= invSZ; quaternion.setFromRotationMatrix(_m1$2); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective(left, right, top, bottom, near, far) { if (far === undefined) { console.warn("THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs."); } const te = this.elements; const x = 2 * near / (right - left); const y = 2 * near / (top - bottom); const a = (right + left) / (right - left); const b = (top + bottom) / (top - bottom); const c = -(far + near) / (far - near); const d = -2 * far * near / (far - near); te[0] = x; te[4] = 0; te[8] = a; te[12] = 0; te[1] = 0; te[5] = y; te[9] = b; te[13] = 0; te[2] = 0; te[6] = 0; te[10] = c; te[14] = d; te[3] = 0; te[7] = 0; te[11] = -1; te[15] = 0; return this; } makeOrthographic(left, right, top, bottom, near, far) { const te = this.elements; const w = 1.0 / (right - left); const h = 1.0 / (top - bottom); const p = 1.0 / (far - near); const x = (right + left) * w; const y = (top + bottom) * h; const z = (far + near) * p; te[0] = 2 * w; te[4] = 0; te[8] = 0; te[12] = -x; te[1] = 0; te[5] = 2 * h; te[9] = 0; te[13] = -y; te[2] = 0; te[6] = 0; te[10] = -2 * p; te[14] = -z; te[3] = 0; te[7] = 0; te[11] = 0; te[15] = 1; return this; } equals(matrix) { const te = this.elements; const me = matrix.elements; for (let i = 0; i < 16; i++) { if (te[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 16; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te = this.elements; array[offset] = te[0]; array[offset + 1] = te[1]; array[offset + 2] = te[2]; array[offset + 3] = te[3]; array[offset + 4] = te[4]; array[offset + 5] = te[5]; array[offset + 6] = te[6]; array[offset + 7] = te[7]; array[offset + 8] = te[8]; array[offset + 9] = te[9]; array[offset + 10] = te[10]; array[offset + 11] = te[11]; array[offset + 12] = te[12]; array[offset + 13] = te[13]; array[offset + 14] = te[14]; array[offset + 15] = te[15]; return array; } } Matrix4.prototype.isMatrix4 = true; const _v1$5 = /*@__PURE__*/new Vector3(); const _m1$2 = /*@__PURE__*/new Matrix4(); const _zero = /*@__PURE__*/new Vector3(0, 0, 0); const _one = /*@__PURE__*/new Vector3(1, 1, 1); const _x = /*@__PURE__*/new Vector3(); const _y = /*@__PURE__*/new Vector3(); const _z = /*@__PURE__*/new Vector3(); const _matrix$1 = /*@__PURE__*/new Matrix4(); const _quaternion$3 = /*@__PURE__*/new Quaternion(); class Euler { constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) { this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x(value) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y(value) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z(value) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order(value) { this._order = value; this._onChangeCallback(); } set(x, y, z, order = this._order) { this._x = x; this._y = y; this._z = z; this._order = order; this._onChangeCallback(); return this; } clone() { return new this.constructor(this._x, this._y, this._z, this._order); } copy(euler) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix(m, order = this._order, update = true) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements; const m11 = te[0], m12 = te[4], m13 = te[8]; const m21 = te[1], m22 = te[5], m23 = te[9]; const m31 = te[2], m32 = te[6], m33 = te[10]; switch (order) { case "XYZ": this._y = Math.asin(clamp(m13, -1, 1)); if (Math.abs(m13) < 0.9999999) { this._x = Math.atan2(-m23, m33); this._z = Math.atan2(-m12, m11); } else { this._x = Math.atan2(m32, m22); this._z = 0; } break; case "YXZ": this._x = Math.asin(-clamp(m23, -1, 1)); if (Math.abs(m23) < 0.9999999) { this._y = Math.atan2(m13, m33); this._z = Math.atan2(m21, m22); } else { this._y = Math.atan2(-m31, m11); this._z = 0; } break; case "ZXY": this._x = Math.asin(clamp(m32, -1, 1)); if (Math.abs(m32) < 0.9999999) { this._y = Math.atan2(-m31, m33); this._z = Math.atan2(-m12, m22); } else { this._y = 0; this._z = Math.atan2(m21, m11); } break; case "ZYX": this._y = Math.asin(-clamp(m31, -1, 1)); if (Math.abs(m31) < 0.9999999) { this._x = Math.atan2(m32, m33); this._z = Math.atan2(m21, m11); } else { this._x = 0; this._z = Math.atan2(-m12, m22); } break; case "YZX": this._z = Math.asin(clamp(m21, -1, 1)); if (Math.abs(m21) < 0.9999999) { this._x = Math.atan2(-m23, m22); this._y = Math.atan2(-m31, m11); } else { this._x = 0; this._y = Math.atan2(m13, m33); } break; case "XZY": this._z = Math.asin(-clamp(m12, -1, 1)); if (Math.abs(m12) < 0.9999999) { this._x = Math.atan2(m32, m22); this._y = Math.atan2(m13, m11); } else { this._x = Math.atan2(-m23, m33); this._y = 0; } break; default: console.warn("THREE.Euler: .setFromRotationMatrix() encountered an unknown order: " + order); } this._order = order; if (update === true) this._onChangeCallback(); return this; } setFromQuaternion(q, order, update) { _matrix$1.makeRotationFromQuaternion(q); return this.setFromRotationMatrix(_matrix$1, order, update); } setFromVector3(v, order = this._order) { return this.set(v.x, v.y, v.z, order); } reorder(newOrder) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler(this); return this.setFromQuaternion(_quaternion$3, newOrder); } equals(euler) { return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order; } fromArray(array) { this._x = array[0]; this._y = array[1]; this._z = array[2]; if (array[3] !== undefined) this._order = array[3]; this._onChangeCallback(); return this; } toArray(array = [], offset = 0) { array[offset] = this._x; array[offset + 1] = this._y; array[offset + 2] = this._z; array[offset + 3] = this._order; return array; } toVector3(optionalResult) { if (optionalResult) { return optionalResult.set(this._x, this._y, this._z); } else { return new Vector3(this._x, this._y, this._z); } } _onChange(callback) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} } Euler.prototype.isEuler = true; Euler.DefaultOrder = "XYZ"; Euler.RotationOrders = ["XYZ", "YZX", "ZXY", "XZY", "YXZ", "ZYX"]; class Layers { constructor() { this.mask = 1 | 0; } set(channel) { this.mask = (1 << channel | 0) >>> 0; } enable(channel) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 0xffffffff | 0; } toggle(channel) { this.mask ^= 1 << channel | 0; } disable(channel) { this.mask &= ~(1 << channel | 0); } disableAll() { this.mask = 0; } test(layers) { return (this.mask & layers.mask) !== 0; } isEnabled(channel) { return (this.mask & (1 << channel | 0)) !== 0; } } let _object3DId = 0; const _v1$4 = /*@__PURE__*/new Vector3(); const _q1 = /*@__PURE__*/new Quaternion(); const _m1$1 = /*@__PURE__*/new Matrix4(); const _target = /*@__PURE__*/new Vector3(); const _position$3 = /*@__PURE__*/new Vector3(); const _scale$2 = /*@__PURE__*/new Vector3(); const _quaternion$2 = /*@__PURE__*/new Quaternion(); const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0); const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0); const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1); const _addedEvent = { type: "added" }; const _removedEvent = { type: "removed" }; class Object3D extends EventDispatcher { constructor() { super(); Object.defineProperty(this, "id", { value: _object3DId++ }); this.uuid = generateUUID(); this.name = ""; this.type = "Object3D"; this.parent = null; this.children = []; this.up = Object3D.DefaultUp.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3(1, 1, 1); function onRotationChange() { quaternion.setFromEuler(rotation, false); } function onQuaternionChange() { rotation.setFromQuaternion(quaternion, undefined, false); } rotation._onChange(onRotationChange); quaternion._onChange(onQuaternionChange); Object.defineProperties(this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } }); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeRender() {} onAfterRender() {} applyMatrix4(matrix) { if (this.matrixAutoUpdate) this.updateMatrix(); this.matrix.premultiply(matrix); this.matrix.decompose(this.position, this.quaternion, this.scale); } applyQuaternion(q) { this.quaternion.premultiply(q); return this; } setRotationFromAxisAngle(axis, angle) { // assumes axis is normalized this.quaternion.setFromAxisAngle(axis, angle); } setRotationFromEuler(euler) { this.quaternion.setFromEuler(euler, true); } setRotationFromMatrix(m) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix(m); } setRotationFromQuaternion(q) { // assumes q is normalized this.quaternion.copy(q); } rotateOnAxis(axis, angle) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle(axis, angle); this.quaternion.multiply(_q1); return this; } rotateOnWorldAxis(axis, angle) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle(axis, angle); this.quaternion.premultiply(_q1); return this; } rotateX(angle) { return this.rotateOnAxis(_xAxis, angle); } rotateY(angle) { return this.rotateOnAxis(_yAxis, angle); } rotateZ(angle) { return this.rotateOnAxis(_zAxis, angle); } translateOnAxis(axis, distance) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy(axis).applyQuaternion(this.quaternion); this.position.add(_v1$4.multiplyScalar(distance)); return this; } translateX(distance) { return this.translateOnAxis(_xAxis, distance); } translateY(distance) { return this.translateOnAxis(_yAxis, distance); } translateZ(distance) { return this.translateOnAxis(_zAxis, distance); } localToWorld(vector) { return vector.applyMatrix4(this.matrixWorld); } worldToLocal(vector) { return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert()); } lookAt(x, y, z) { // This method does not support objects having non-uniformly-scaled parent(s) if (x.isVector3) { _target.copy(x); } else { _target.set(x, y, z); } const parent = this.parent; this.updateWorldMatrix(true, false); _position$3.setFromMatrixPosition(this.matrixWorld); if (this.isCamera || this.isLight) { _m1$1.lookAt(_position$3, _target, this.up); } else { _m1$1.lookAt(_target, _position$3, this.up); } this.quaternion.setFromRotationMatrix(_m1$1); if (parent) { _m1$1.extractRotation(parent.matrixWorld); _q1.setFromRotationMatrix(_m1$1); this.quaternion.premultiply(_q1.invert()); } } add(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.add(arguments[i]); } return this; } if (object === this) { console.error("THREE.Object3D.add: object can"t be added as a child of itself.", object); return this; } if (object && object.isObject3D) { if (object.parent !== null) { object.parent.remove(object); } object.parent = this; this.children.push(object); object.dispatchEvent(_addedEvent); } else { console.error("THREE.Object3D.add: object not an instance of THREE.Object3D.", object); } return this; } remove(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.remove(arguments[i]); } return this; } const index = this.children.indexOf(object); if (index !== -1) { object.parent = null; this.children.splice(index, 1); object.dispatchEvent(_removedEvent); } return this; } removeFromParent() { const parent = this.parent; if (parent !== null) { parent.remove(this); } return this; } clear() { for (let i = 0; i < this.children.length; i++) { const object = this.children[i]; object.parent = null; object.dispatchEvent(_removedEvent); } this.children.length = 0; return this; } attach(object) { // adds object as a child of this, while maintaining the object"s world transform // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) this.updateWorldMatrix(true, false); _m1$1.copy(this.matrixWorld).invert(); if (object.parent !== null) { object.parent.updateWorldMatrix(true, false); _m1$1.multiply(object.parent.matrixWorld); } object.applyMatrix4(_m1$1); this.add(object); object.updateWorldMatrix(false, true); return this; } getObjectById(id) { return this.getObjectByProperty("id", id); } getObjectByName(name) { return this.getObjectByProperty("name", name); } getObjectByProperty(name, value) { if (this[name] === value) return this; for (let i = 0, l = this.children.length; i < l; i++) { const child = this.children[i]; const object = child.getObjectByProperty(name, value); if (object !== undefined) { return object; } } return undefined; } getWorldPosition(target) { this.updateWorldMatrix(true, false); return target.setFromMatrixPosition(this.matrixWorld); } getWorldQuaternion(target) { this.updateWorldMatrix(true, false); this.matrixWorld.decompose(_position$3, target, _scale$2); return target; } getWorldScale(target) { this.updateWorldMatrix(true, false); this.matrixWorld.decompose(_position$3, _quaternion$2, target); return target; } getWorldDirection(target) { this.updateWorldMatrix(true, false); const e = this.matrixWorld.elements; return target.set(e[8], e[9], e[10]).normalize(); } raycast() {} traverse(callback) { callback(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].traverse(callback); } } traverseVisible(callback) { if (this.visible === false) return; callback(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].traverseVisible(callback); } } traverseAncestors(callback) { const parent = this.parent; if (parent !== null) { callback(parent); parent.traverseAncestors(callback); } } updateMatrix() { this.matrix.compose(this.position, this.quaternion, this.scale); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld(force) { if (this.matrixAutoUpdate) this.updateMatrix(); if (this.matrixWorldNeedsUpdate || force) { if (this.parent === null) { this.matrixWorld.copy(this.matrix); } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); } this.matrixWorldNeedsUpdate = false; force = true; } // update children const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].updateMatrixWorld(force); } } updateWorldMatrix(updateParents, updateChildren) { const parent = this.parent; if (updateParents === true && parent !== null) { parent.updateWorldMatrix(true, false); } if (this.matrixAutoUpdate) this.updateMatrix(); if (this.parent === null) { this.matrixWorld.copy(this.matrix); } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); } // update children if (updateChildren === true) { const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].updateWorldMatrix(false, true); } } } toJSON(meta) { // meta is a string when called from JSON.stringify const isRootObject = meta === undefined || typeof meta === "string"; const output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if (isRootObject) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {} }; output.metadata = { version: 4.5, type: "Object", generator: "Object3D.toJSON" }; } // standard Object3D serialization const object = {}; object.uuid = this.uuid; object.type = this.type; if (this.name !== "") object.name = this.name; if (this.castShadow === true) object.castShadow = true; if (this.receiveShadow === true) object.receiveShadow = true; if (this.visible === false) object.visible = false; if (this.frustumCulled === false) object.frustumCulled = false; if (this.renderOrder !== 0) object.renderOrder = this.renderOrder; if (JSON.stringify(this.userData) !== "{}") object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties if (this.isInstancedMesh) { object.type = "InstancedMesh"; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON(); } // function serialize(library, element) { if (library[element.uuid] === undefined) { library[element.uuid] = element.toJSON(meta); } return element.uuid; } if (this.isScene) { if (this.background) { if (this.background.isColor) { object.background = this.background.toJSON(); } else if (this.background.isTexture) { object.background = this.background.toJSON(meta).uuid; } } if (this.environment && this.environment.isTexture) { object.environment = this.environment.toJSON(meta).uuid; } } else if (this.isMesh || this.isLine || this.isPoints) { object.geometry = serialize(meta.geometries, this.geometry); const parameters = this.geometry.parameters; if (parameters !== undefined && parameters.shapes !== undefined) { const shapes = parameters.shapes; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; serialize(meta.shapes, shape); } } else { serialize(meta.shapes, shapes); } } } if (this.isSkinnedMesh) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if (this.skeleton !== undefined) { serialize(meta.skeletons, this.skeleton); object.skeleton = this.skeleton.uuid; } } if (this.material !== undefined) { if (Array.isArray(this.material)) { const uuids = []; for (let i = 0, l = this.material.length; i < l; i++) { uuids.push(serialize(meta.materials, this.material[i])); } object.material = uuids; } else { object.material = serialize(meta.materials, this.material); } } // if (this.children.length > 0) { object.children = []; for (let i = 0; i < this.children.length; i++) { object.children.push(this.children[i].toJSON(meta).object); } } // if (this.animations.length > 0) { object.animations = []; for (let i = 0; i < this.animations.length; i++) { const animation = this.animations[i]; object.animations.push(serialize(meta.animations, animation)); } } if (isRootObject) { const geometries = extractFromCache(meta.geometries); const materials = extractFromCache(meta.materials); const textures = extractFromCache(meta.textures); const images = extractFromCache(meta.images); const shapes = extractFromCache(meta.shapes); const skeletons = extractFromCache(meta.skeletons); const animations = extractFromCache(meta.animations); if (geometries.length > 0) output.geometries = geometries; if (materials.length > 0) output.materials = materials; if (textures.length > 0) output.textures = textures; if (images.length > 0) output.images = images; if (shapes.length > 0) output.shapes = shapes; if (skeletons.length > 0) output.skeletons = skeletons; if (animations.length > 0) output.animations = animations; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache(cache) { const values = []; for (const key in cache) { const data = cache[key]; delete data.metadata; values.push(data); } return values; } } clone(recursive) { return new this.constructor().copy(this, recursive); } copy(source, recursive = true) { this.name = source.name; this.up.copy(source.up); this.position.copy(source.position); this.rotation.order = source.rotation.order; this.quaternion.copy(source.quaternion); this.scale.copy(source.scale); this.matrix.copy(source.matrix); this.matrixWorld.copy(source.matrixWorld); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.userData = JSON.parse(JSON.stringify(source.userData)); if (recursive === true) { for (let i = 0; i < source.children.length; i++) { const child = source.children[i]; this.add(child.clone()); } } return this; } } Object3D.DefaultUp = new Vector3(0, 1, 0); Object3D.DefaultMatrixAutoUpdate = true; Object3D.prototype.isObject3D = true; const _v0$1 = /*@__PURE__*/new Vector3(); const _v1$3 = /*@__PURE__*/new Vector3(); const _v2$2 = /*@__PURE__*/new Vector3(); const _v3$1 = /*@__PURE__*/new Vector3(); const _vab = /*@__PURE__*/new Vector3(); const _vac = /*@__PURE__*/new Vector3(); const _vbc = /*@__PURE__*/new Vector3(); const _vap = /*@__PURE__*/new Vector3(); const _vbp = /*@__PURE__*/new Vector3(); const _vcp = /*@__PURE__*/new Vector3(); class Triangle { constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) { this.a = a; this.b = b; this.c = c; } static getNormal(a, b, c, target) { target.subVectors(c, b); _v0$1.subVectors(a, b); target.cross(_v0$1); const targetLengthSq = target.lengthSq(); if (targetLengthSq > 0) { return target.multiplyScalar(1 / Math.sqrt(targetLengthSq)); } return target.set(0, 0, 0); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord(point, a, b, c, target) { _v0$1.subVectors(c, a); _v1$3.subVectors(b, a); _v2$2.subVectors(point, a); const dot00 = _v0$1.dot(_v0$1); const dot01 = _v0$1.dot(_v1$3); const dot02 = _v0$1.dot(_v2$2); const dot11 = _v1$3.dot(_v1$3); const dot12 = _v1$3.dot(_v2$2); const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle if (denom === 0) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set(-2, -1, -1); } const invDenom = 1 / denom; const u = (dot11 * dot02 - dot01 * dot12) * invDenom; const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1 return target.set(1 - u - v, v, u); } static containsPoint(point, a, b, c) { this.getBarycoord(point, a, b, c, _v3$1); return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1; } static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) { this.getBarycoord(point, p1, p2, p3, _v3$1); target.set(0, 0); target.addScaledVector(uv1, _v3$1.x); target.addScaledVector(uv2, _v3$1.y); target.addScaledVector(uv3, _v3$1.z); return target; } static isFrontFacing(a, b, c, direction) { _v0$1.subVectors(c, b); _v1$3.subVectors(a, b); // strictly front facing return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false; } set(a, b, c) { this.a.copy(a); this.b.copy(b); this.c.copy(c); return this; } setFromPointsAndIndices(points, i0, i1, i2) { this.a.copy(points[i0]); this.b.copy(points[i1]); this.c.copy(points[i2]); return this; } setFromAttributeAndIndices(attribute, i0, i1, i2) { this.a.fromBufferAttribute(attribute, i0); this.b.fromBufferAttribute(attribute, i1); this.c.fromBufferAttribute(attribute, i2); return this; } clone() { return new this.constructor().copy(this); } copy(triangle) { this.a.copy(triangle.a); this.b.copy(triangle.b); this.c.copy(triangle.c); return this; } getArea() { _v0$1.subVectors(this.c, this.b); _v1$3.subVectors(this.a, this.b); return _v0$1.cross(_v1$3).length() * 0.5; } getMidpoint(target) { return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3); } getNormal(target) { return Triangle.getNormal(this.a, this.b, this.c, target); } getPlane(target) { return target.setFromCoplanarPoints(this.a, this.b, this.c); } getBarycoord(point, target) { return Triangle.getBarycoord(point, this.a, this.b, this.c, target); } getUV(point, uv1, uv2, uv3, target) { return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target); } containsPoint(point) { return Triangle.containsPoint(point, this.a, this.b, this.c); } isFrontFacing(direction) { return Triangle.isFrontFacing(this.a, this.b, this.c, direction); } intersectsBox(box) { return box.intersectsTriangle(this); } closestPointToPoint(p, target) { const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we"re distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors(b, a); _vac.subVectors(c, a); _vap.subVectors(p, a); const d1 = _vab.dot(_vap); const d2 = _vac.dot(_vap); if (d1 <= 0 && d2 <= 0) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy(a); } _vbp.subVectors(p, b); const d3 = _vab.dot(_vbp); const d4 = _vac.dot(_vbp); if (d3 >= 0 && d4 <= d3) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy(b); } const vc = d1 * d4 - d3 * d2; if (vc <= 0 && d1 >= 0 && d3 <= 0) { v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy(a).addScaledVector(_vab, v); } _vcp.subVectors(p, c); const d5 = _vab.dot(_vcp); const d6 = _vac.dot(_vcp); if (d6 >= 0 && d5 <= d6) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy(c); } const vb = d5 * d2 - d1 * d6; if (vb <= 0 && d2 >= 0 && d6 <= 0) { w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy(a).addScaledVector(_vac, w); } const va = d3 * d6 - d5 * d4; if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) { _vbc.subVectors(c, b); w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy(b).addScaledVector(_vbc, w); // edge region of BC } // face region const denom = 1 / (va + vb + vc); // u = va * denom v = vb * denom; w = vc * denom; return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w); } equals(triangle) { return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c); } } let materialId = 0; class Material extends EventDispatcher { constructor() { super(); Object.defineProperty(this, "id", { value: materialId++ }); this.uuid = generateUUID(); this.name = ""; this.type = "Material"; this.fog = true; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer"s default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; this._alphaTest = 0; } get alphaTest() { return this._alphaTest; } set alphaTest(value) { if (this._alphaTest > 0 !== value > 0) { this.version++; } this._alphaTest = value; } onBuild() {} onBeforeRender() {} onBeforeCompile() {} customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues(values) { if (values === undefined) return; for (const key in values) { const newValue = values[key]; if (newValue === undefined) { console.warn("THREE.Material: "" + key + "" parameter is undefined."); continue; } // for backward compatability if shading is set in the constructor if (key === "shading") { console.warn("THREE." + this.type + ": .shading has been removed. Use the boolean .flatShading instead."); this.flatShading = newValue === FlatShading ? true : false; continue; } const currentValue = this[key]; if (currentValue === undefined) { console.warn("THREE." + this.type + ": "" + key + "" is not a property of this material."); continue; } if (currentValue && currentValue.isColor) { currentValue.set(newValue); } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) { currentValue.copy(newValue); } else { this[key] = newValue; } } } toJSON(meta) { const isRoot = meta === undefined || typeof meta === "string"; if (isRoot) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.5, type: "Material", generator: "Material.toJSON" } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if (this.name !== "") data.name = this.name; if (this.color && this.color.isColor) data.color = this.color.getHex(); if (this.roughness !== undefined) data.roughness = this.roughness; if (this.metalness !== undefined) data.metalness = this.metalness; if (this.sheen !== undefined) data.sheen = this.sheen; if (this.sheenColor && this.sheenColor.isColor) data.sheenColor = this.sheenColor.getHex(); if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness; if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex(); if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity; if (this.specular && this.specular.isColor) data.specular = this.specular.getHex(); if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity; if (this.specularColor && this.specularColor.isColor) data.specularColor = this.specularColor.getHex(); if (this.shininess !== undefined) data.shininess = this.shininess; if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat; if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness; if (this.clearcoatMap && this.clearcoatMap.isTexture) { data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid; } if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid; } if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid; if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid; if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid; if (this.lightMap && this.lightMap.isTexture) { data.lightMap = this.lightMap.toJSON(meta).uuid; data.lightMapIntensity = this.lightMapIntensity; } if (this.aoMap && this.aoMap.isTexture) { data.aoMap = this.aoMap.toJSON(meta).uuid; data.aoMapIntensity = this.aoMapIntensity; } if (this.bumpMap && this.bumpMap.isTexture) { data.bumpMap = this.bumpMap.toJSON(meta).uuid; data.bumpScale = this.bumpScale; } if (this.normalMap && this.normalMap.isTexture) { data.normalMap = this.normalMap.toJSON(meta).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if (this.displacementMap && this.displacementMap.isTexture) { data.displacementMap = this.displacementMap.toJSON(meta).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid; if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid; if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid; if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid; if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid; if (this.specularColorMap && this.specularColorMap.isTexture) data.specularColorMap = this.specularColorMap.toJSON(meta).uuid; if (this.envMap && this.envMap.isTexture) { data.envMap = this.envMap.toJSON(meta).uuid; if (this.combine !== undefined) data.combine = this.combine; } if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity; if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity; if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio; if (this.gradientMap && this.gradientMap.isTexture) { data.gradientMap = this.gradientMap.toJSON(meta).uuid; } if (this.transmission !== undefined) data.transmission = this.transmission; if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid; if (this.thickness !== undefined) data.thickness = this.thickness; if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid; if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance; if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex(); if (this.size !== undefined) data.size = this.size; if (this.shadowSide !== null) data.shadowSide = this.shadowSide; if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation; if (this.blending !== NormalBlending) data.blending = this.blending; if (this.side !== FrontSide) data.side = this.side; if (this.vertexColors) data.vertexColors = true; if (this.opacity < 1) data.opacity = this.opacity; if (this.transparent === true) data.transparent = this.transparent; data.depthFunc = this.depthFunc; data.depthTest = this.depthTest; data.depthWrite = this.depthWrite; data.colorWrite = this.colorWrite; data.stencilWrite = this.stencilWrite; data.stencilWriteMask = this.stencilWriteMask; data.stencilFunc = this.stencilFunc; data.stencilRef = this.stencilRef; data.stencilFuncMask = this.stencilFuncMask; data.stencilFail = this.stencilFail; data.stencilZFail = this.stencilZFail; data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial) if (this.rotation && this.rotation !== 0) data.rotation = this.rotation; if (this.polygonOffset === true) data.polygonOffset = true; if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor; if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits; if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth; if (this.dashSize !== undefined) data.dashSize = this.dashSize; if (this.gapSize !== undefined) data.gapSize = this.gapSize; if (this.scale !== undefined) data.scale = this.scale; if (this.dithering === true) data.dithering = true; if (this.alphaTest > 0) data.alphaTest = this.alphaTest; if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage; if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha; if (this.wireframe === true) data.wireframe = this.wireframe; if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth; if (this.wireframeLinecap !== "round") data.wireframeLinecap = this.wireframeLinecap; if (this.wireframeLinejoin !== "round") data.wireframeLinejoin = this.wireframeLinejoin; if (this.flatShading === true) data.flatShading = this.flatShading; if (this.visible === false) data.visible = false; if (this.toneMapped === false) data.toneMapped = false; if (JSON.stringify(this.userData) !== "{}") data.userData = this.userData; // TODO: Copied from Object3D.toJSON function extractFromCache(cache) { const values = []; for (const key in cache) { const data = cache[key]; delete data.metadata; values.push(data); } return values; } if (isRoot) { const textures = extractFromCache(meta.textures); const images = extractFromCache(meta.images); if (textures.length > 0) data.textures = textures; if (images.length > 0) data.images = images; } return data; } clone() { return new this.constructor().copy(this); } copy(source) { this.name = source.name; this.fog = source.fog; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if (srcPlanes !== null) { const n = srcPlanes.length; dstPlanes = new Array(n); for (let i = 0; i !== n; ++i) { dstPlanes[i] = srcPlanes[i].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse(JSON.stringify(source.userData)); return this; } dispose() { this.dispatchEvent({ type: "dispose" }); } set needsUpdate(value) { if (value === true) this.version++; } } Material.prototype.isMaterial = true; /** * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * } */ class MeshBasicMaterial extends Material { constructor(parameters) { super(); this.type = "MeshBasicMaterial"; this.color = new Color(0xffffff); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = "round"; this.wireframeLinejoin = "round"; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; return this; } } MeshBasicMaterial.prototype.isMeshBasicMaterial = true; const _vector$9 = /*@__PURE__*/new Vector3(); const _vector2$1 = /*@__PURE__*/new Vector2(); class BufferAttribute { constructor(array, itemSize, normalized) { if (Array.isArray(array)) { throw new TypeError("THREE.BufferAttribute: array should be a Typed Array."); } this.name = ""; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized === true; this.usage = StaticDrawUsage; this.updateRange = { offset: 0, count: -1 }; this.version = 0; } onUploadCallback() {} set needsUpdate(value) { if (value === true) this.version++; } setUsage(value) { this.usage = value; return this; } copy(source) { this.name = source.name; this.array = new source.array.constructor(source.array); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; return this; } copyAt(index1, attribute, index2) { index1 *= this.itemSize; index2 *= attribute.itemSize; for (let i = 0, l = this.itemSize; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i]; } return this; } copyArray(array) { this.array.set(array); return this; } copyColorsArray(colors) { const array = this.array; let offset = 0; for (let i = 0, l = colors.length; i < l; i++) { let color = colors[i]; if (color === undefined) { console.warn("THREE.BufferAttribute.copyColorsArray(): color is undefined", i); color = new Color(); } array[offset++] = color.r; array[offset++] = color.g; array[offset++] = color.b; } return this; } copyVector2sArray(vectors) { const array = this.array; let offset = 0; for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i]; if (vector === undefined) { console.warn("THREE.BufferAttribute.copyVector2sArray(): vector is undefined", i); vector = new Vector2(); } array[offset++] = vector.x; array[offset++] = vector.y; } return this; } copyVector3sArray(vectors) { const array = this.array; let offset = 0; for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i]; if (vector === undefined) { console.warn("THREE.BufferAttribute.copyVector3sArray(): vector is undefined", i); vector = new Vector3(); } array[offset++] = vector.x; array[offset++] = vector.y; array[offset++] = vector.z; } return this; } copyVector4sArray(vectors) { const array = this.array; let offset = 0; for (let i = 0, l = vectors.length; i < l; i++) { let vector = vectors[i]; if (vector === undefined) { console.warn("THREE.BufferAttribute.copyVector4sArray(): vector is undefined", i); vector = new Vector4(); } array[offset++] = vector.x; array[offset++] = vector.y; array[offset++] = vector.z; array[offset++] = vector.w; } return this; } applyMatrix3(m) { if (this.itemSize === 2) { for (let i = 0, l = this.count; i < l; i++) { _vector2$1.fromBufferAttribute(this, i); _vector2$1.applyMatrix3(m); this.setXY(i, _vector2$1.x, _vector2$1.y); } } else if (this.itemSize === 3) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i); _vector$9.applyMatrix3(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } } return this; } applyMatrix4(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.x = this.getX(i); _vector$9.y = this.getY(i); _vector$9.z = this.getZ(i); _vector$9.applyMatrix4(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.x = this.getX(i); _vector$9.y = this.getY(i); _vector$9.z = this.getZ(i); _vector$9.applyNormalMatrix(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.x = this.getX(i); _vector$9.y = this.getY(i); _vector$9.z = this.getZ(i); _vector$9.transformDirection(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } set(value, offset = 0) { this.array.set(value, offset); return this; } getX(index) { return this.array[index * this.itemSize]; } setX(index, x) { this.array[index * this.itemSize] = x; return this; } getY(index) { return this.array[index * this.itemSize + 1]; } setY(index, y) { this.array[index * this.itemSize + 1] = y; return this; } getZ(index) { return this.array[index * this.itemSize + 2]; } setZ(index, z) { this.array[index * this.itemSize + 2] = z; return this; } getW(index) { return this.array[index * this.itemSize + 3]; } setW(index, w) { this.array[index * this.itemSize + 3] = w; return this; } setXY(index, x, y) { index *= this.itemSize; this.array[index + 0] = x; this.array[index + 1] = y; return this; } setXYZ(index, x, y, z) { index *= this.itemSize; this.array[index + 0] = x; this.array[index + 1] = y; this.array[index + 2] = z; return this; } setXYZW(index, x, y, z, w) { index *= this.itemSize; this.array[index + 0] = x; this.array[index + 1] = y; this.array[index + 2] = z; this.array[index + 3] = w; return this; } onUpload(callback) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor(this.array, this.itemSize).copy(this); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.prototype.slice.call(this.array), normalized: this.normalized }; if (this.name !== "") data.name = this.name; if (this.usage !== StaticDrawUsage) data.usage = this.usage; if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange; return data; } } BufferAttribute.prototype.isBufferAttribute = true; // class Int8BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int8Array(array), itemSize, normalized); } } class Uint8BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint8Array(array), itemSize, normalized); } } class Uint8ClampedBufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint8ClampedArray(array), itemSize, normalized); } } class Int16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int16Array(array), itemSize, normalized); } } class Uint16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized); } } class Int32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Int32Array(array), itemSize, normalized); } } class Uint32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint32Array(array), itemSize, normalized); } } class Float16BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized); } } Float16BufferAttribute.prototype.isFloat16BufferAttribute = true; class Float32BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Float32Array(array), itemSize, normalized); } } class Float64BufferAttribute extends BufferAttribute { constructor(array, itemSize, normalized) { super(new Float64Array(array), itemSize, normalized); } } // let _id$1 = 0; const _m1 = /*@__PURE__*/new Matrix4(); const _obj = /*@__PURE__*/new Object3D(); const _offset = /*@__PURE__*/new Vector3(); const _box$1 = /*@__PURE__*/new Box3(); const _boxMorphTargets = /*@__PURE__*/new Box3(); const _vector$8 = /*@__PURE__*/new Vector3(); class BufferGeometry extends EventDispatcher { constructor() { super(); Object.defineProperty(this, "id", { value: _id$1++ }); this.uuid = generateUUID(); this.name = ""; this.type = "BufferGeometry"; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex(index) { if (Array.isArray(index)) { this.index = new (arrayNeedsUint32(index) ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1); } else { this.index = index; } return this; } getAttribute(name) { return this.attributes[name]; } setAttribute(name, attribute) { this.attributes[name] = attribute; return this; } deleteAttribute(name) { delete this.attributes[name]; return this; } hasAttribute(name) { return this.attributes[name] !== undefined; } addGroup(start, count, materialIndex = 0) { this.groups.push({ start: start, count: count, materialIndex: materialIndex }); } clearGroups() { this.groups = []; } setDrawRange(start, count) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4(matrix) { const position = this.attributes.position; if (position !== undefined) { position.applyMatrix4(matrix); position.needsUpdate = true; } const normal = this.attributes.normal; if (normal !== undefined) { const normalMatrix = new Matrix3().getNormalMatrix(matrix); normal.applyNormalMatrix(normalMatrix); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if (tangent !== undefined) { tangent.transformDirection(matrix); tangent.needsUpdate = true; } if (this.boundingBox !== null) { this.computeBoundingBox(); } if (this.boundingSphere !== null) { this.computeBoundingSphere(); } return this; } applyQuaternion(q) { _m1.makeRotationFromQuaternion(q); this.applyMatrix4(_m1); return this; } rotateX(angle) { // rotate geometry around world x-axis _m1.makeRotationX(angle); this.applyMatrix4(_m1); return this; } rotateY(angle) { // rotate geometry around world y-axis _m1.makeRotationY(angle); this.applyMatrix4(_m1); return this; } rotateZ(angle) { // rotate geometry around world z-axis _m1.makeRotationZ(angle); this.applyMatrix4(_m1); return this; } translate(x, y, z) { // translate geometry _m1.makeTranslation(x, y, z); this.applyMatrix4(_m1); return this; } scale(x, y, z) { // scale geometry _m1.makeScale(x, y, z); this.applyMatrix4(_m1); return this; } lookAt(vector) { _obj.lookAt(vector); _obj.updateMatrix(); this.applyMatrix4(_obj.matrix); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter(_offset).negate(); this.translate(_offset.x, _offset.y, _offset.z); return this; } setFromPoints(points) { const position = []; for (let i = 0, l = points.length; i < l; i++) { const point = points[i]; position.push(point.x, point.y, point.z || 0); } this.setAttribute("position", new Float32BufferAttribute(position, 3)); return this; } computeBoundingBox() { if (this.boundingBox === null) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if (position && position.isGLBufferAttribute) { console.error("THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".", this); this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity)); return; } if (position !== undefined) { this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; _box$1.setFromBufferAttribute(morphAttribute); if (this.morphTargetsRelative) { _vector$8.addVectors(this.boundingBox.min, _box$1.min); this.boundingBox.expandByPoint(_vector$8); _vector$8.addVectors(this.boundingBox.max, _box$1.max); this.boundingBox.expandByPoint(_vector$8); } else { this.boundingBox.expandByPoint(_box$1.min); this.boundingBox.expandByPoint(_box$1.max); } } } } else { this.boundingBox.makeEmpty(); } if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) { console.error("THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.", this); } } computeBoundingSphere() { if (this.boundingSphere === null) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if (position && position.isGLBufferAttribute) { console.error("THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".", this); this.boundingSphere.set(new Vector3(), Infinity); return; } if (position) { // first, find the center of the bounding sphere const center = this.boundingSphere.center; _box$1.setFromBufferAttribute(position); // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; _boxMorphTargets.setFromBufferAttribute(morphAttribute); if (this.morphTargetsRelative) { _vector$8.addVectors(_box$1.min, _boxMorphTargets.min); _box$1.expandByPoint(_vector$8); _vector$8.addVectors(_box$1.max, _boxMorphTargets.max); _box$1.expandByPoint(_vector$8); } else { _box$1.expandByPoint(_boxMorphTargets.min); _box$1.expandByPoint(_boxMorphTargets.max); } } } _box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0; for (let i = 0, il = position.count; i < il; i++) { _vector$8.fromBufferAttribute(position, i); maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); } // process morph attributes if present if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; const morphTargetsRelative = this.morphTargetsRelative; for (let j = 0, jl = morphAttribute.count; j < jl; j++) { _vector$8.fromBufferAttribute(morphAttribute, j); if (morphTargetsRelative) { _offset.fromBufferAttribute(position, j); _vector$8.add(_offset); } maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); } } } this.boundingSphere.radius = Math.sqrt(maxRadiusSq); if (isNaN(this.boundingSphere.radius)) { console.error("THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.", this); } } } computeTangents() { const index = this.index; const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) { console.error("THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)"); return; } const indices = index.array; const positions = attributes.position.array; const normals = attributes.normal.array; const uvs = attributes.uv.array; const nVertices = positions.length / 3; if (attributes.tangent === undefined) { this.setAttribute("tangent", new BufferAttribute(new Float32Array(4 * nVertices), 4)); } const tangents = attributes.tangent.array; const tan1 = [], tan2 = []; for (let i = 0; i < nVertices; i++) { tan1[i] = new Vector3(); tan2[i] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle(a, b, c) { vA.fromArray(positions, a * 3); vB.fromArray(positions, b * 3); vC.fromArray(positions, c * 3); uvA.fromArray(uvs, a * 2); uvB.fromArray(uvs, b * 2); uvC.fromArray(uvs, c * 2); vB.sub(vA); vC.sub(vA); uvB.sub(uvA); uvC.sub(uvA); const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices if (!isFinite(r)) return; sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r); tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r); tan1[a].add(sdir); tan1[b].add(sdir); tan1[c].add(sdir); tan2[a].add(tdir); tan2[b].add(tdir); tan2[c].add(tdir); } let groups = this.groups; if (groups.length === 0) { groups = [{ start: 0, count: indices.length }]; } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i]; const start = group.start; const count = group.count; for (let j = start, jl = start + count; j < jl; j += 3) { handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]); } } const tmp = new Vector3(), tmp2 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex(v) { n.fromArray(normals, v * 3); n2.copy(n); const t = tan1[v]; // Gram-Schmidt orthogonalize tmp.copy(t); tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness tmp2.crossVectors(n2, t); const test = tmp2.dot(tan2[v]); const w = test < 0.0 ? -1.0 : 1.0; tangents[v * 4] = tmp.x; tangents[v * 4 + 1] = tmp.y; tangents[v * 4 + 2] = tmp.z; tangents[v * 4 + 3] = w; } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i]; const start = group.start; const count = group.count; for (let j = start, jl = start + count; j < jl; j += 3) { handleVertex(indices[j + 0]); handleVertex(indices[j + 1]); handleVertex(indices[j + 2]); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute("position"); if (positionAttribute !== undefined) { let normalAttribute = this.getAttribute("normal"); if (normalAttribute === undefined) { normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3); this.setAttribute("normal", normalAttribute); } else { // reset existing normals to zero for (let i = 0, il = normalAttribute.count; i < il; i++) { normalAttribute.setXYZ(i, 0, 0, 0); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); // indexed elements if (index) { for (let i = 0, il = index.count; i < il; i += 3) { const vA = index.getX(i + 0); const vB = index.getX(i + 1); const vC = index.getX(i + 2); pA.fromBufferAttribute(positionAttribute, vA); pB.fromBufferAttribute(positionAttribute, vB); pC.fromBufferAttribute(positionAttribute, vC); cb.subVectors(pC, pB); ab.subVectors(pA, pB); cb.cross(ab); nA.fromBufferAttribute(normalAttribute, vA); nB.fromBufferAttribute(normalAttribute, vB); nC.fromBufferAttribute(normalAttribute, vC); nA.add(cb); nB.add(cb); nC.add(cb); normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z); normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z); normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z); } } else { // non-indexed elements (unconnected triangle soup) for (let i = 0, il = positionAttribute.count; i < il; i += 3) { pA.fromBufferAttribute(positionAttribute, i + 0); pB.fromBufferAttribute(positionAttribute, i + 1); pC.fromBufferAttribute(positionAttribute, i + 2); cb.subVectors(pC, pB); ab.subVectors(pA, pB); cb.cross(ab); normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z); normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z); normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } merge(geometry, offset) { if (!(geometry && geometry.isBufferGeometry)) { console.error("THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.", geometry); return; } if (offset === undefined) { offset = 0; console.warn("THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. " + "Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge."); } const attributes = this.attributes; for (const key in attributes) { if (geometry.attributes[key] === undefined) continue; const attribute1 = attributes[key]; const attributeArray1 = attribute1.array; const attribute2 = geometry.attributes[key]; const attributeArray2 = attribute2.array; const attributeOffset = attribute2.itemSize * offset; const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset); for (let i = 0, j = attributeOffset; i < length; i++, j++) { attributeArray1[j] = attributeArray2[i]; } } return this; } normalizeNormals() { const normals = this.attributes.normal; for (let i = 0, il = normals.count; i < il; i++) { _vector$8.fromBufferAttribute(normals, i); _vector$8.normalize(); normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z); } } toNonIndexed() { function convertBufferAttribute(attribute, indices) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor(indices.length * itemSize); let index = 0, index2 = 0; for (let i = 0, l = indices.length; i < l; i++) { if (attribute.isInterleavedBufferAttribute) { index = indices[i] * attribute.data.stride + attribute.offset; } else { index = indices[i] * itemSize; } for (let j = 0; j < itemSize; j++) { array2[index2++] = array[index++]; } } return new BufferAttribute(array2, itemSize, normalized); } // if (this.index === null) { console.warn("THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed."); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; // attributes for (const name in attributes) { const attribute = attributes[name]; const newAttribute = convertBufferAttribute(attribute, indices); geometry2.setAttribute(name, newAttribute); } // morph attributes const morphAttributes = this.morphAttributes; for (const name in morphAttributes) { const morphArray = []; const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes for (let i = 0, il = morphAttribute.length; i < il; i++) { const attribute = morphAttribute[i]; const newAttribute = convertBufferAttribute(attribute, indices); morphArray.push(newAttribute); } geometry2.morphAttributes[name] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups const groups = this.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; geometry2.addGroup(group.start, group.count, group.materialIndex); } return geometry2; } toJSON() { const data = { metadata: { version: 4.5, type: "BufferGeometry", generator: "BufferGeometry.toJSON" } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if (this.name !== "") data.name = this.name; if (Object.keys(this.userData).length > 0) data.userData = this.userData; if (this.parameters !== undefined) { const parameters = this.parameters; for (const key in parameters) { if (parameters[key] !== undefined) data[key] = parameters[key]; } return data; } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} }; const index = this.index; if (index !== null) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call(index.array) }; } const attributes = this.attributes; for (const key in attributes) { const attribute = attributes[key]; data.data.attributes[key] = attribute.toJSON(data.data); } const morphAttributes = {}; let hasMorphAttributes = false; for (const key in this.morphAttributes) { const attributeArray = this.morphAttributes[key]; const array = []; for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i]; array.push(attribute.toJSON(data.data)); } if (array.length > 0) { morphAttributes[key] = array; hasMorphAttributes = true; } } if (hasMorphAttributes) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if (groups.length > 0) { data.data.groups = JSON.parse(JSON.stringify(groups)); } const boundingSphere = this.boundingSphere; if (boundingSphere !== null) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { return new this.constructor().copy(this); } copy(source) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data const data = {}; // name this.name = source.name; // index const index = source.index; if (index !== null) { this.setIndex(index.clone(data)); } // attributes const attributes = source.attributes; for (const name in attributes) { const attribute = attributes[name]; this.setAttribute(name, attribute.clone(data)); } // morph attributes const morphAttributes = source.morphAttributes; for (const name in morphAttributes) { const array = []; const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes for (let i = 0, l = morphAttribute.length; i < l; i++) { array.push(morphAttribute[i].clone(data)); } this.morphAttributes[name] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups const groups = source.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; this.addGroup(group.start, group.count, group.materialIndex); } // bounding box const boundingBox = source.boundingBox; if (boundingBox !== null) { this.boundingBox = boundingBox.clone(); } // bounding sphere const boundingSphere = source.boundingSphere; if (boundingSphere !== null) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; // geometry generator parameters if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters); return this; } dispose() { this.dispatchEvent({ type: "dispose" }); } } BufferGeometry.prototype.isBufferGeometry = true; const _inverseMatrix$2 = /*@__PURE__*/new Matrix4(); const _ray$2 = /*@__PURE__*/new Ray(); const _sphere$3 = /*@__PURE__*/new Sphere(); const _vA$1 = /*@__PURE__*/new Vector3(); const _vB$1 = /*@__PURE__*/new Vector3(); const _vC$1 = /*@__PURE__*/new Vector3(); const _tempA = /*@__PURE__*/new Vector3(); const _tempB = /*@__PURE__*/new Vector3(); const _tempC = /*@__PURE__*/new Vector3(); const _morphA = /*@__PURE__*/new Vector3(); const _morphB = /*@__PURE__*/new Vector3(); const _morphC = /*@__PURE__*/new Vector3(); const _uvA$1 = /*@__PURE__*/new Vector2(); const _uvB$1 = /*@__PURE__*/new Vector2(); const _uvC$1 = /*@__PURE__*/new Vector2(); const _intersectionPoint = /*@__PURE__*/new Vector3(); const _intersectionPointWorld = /*@__PURE__*/new Vector3(); class Mesh extends Object3D { constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) { super(); this.type = "Mesh"; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source) { super.copy(source); if (source.morphTargetInfluences !== undefined) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if (source.morphTargetDictionary !== undefined) { this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary); } this.material = source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; if (geometry.isBufferGeometry) { const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== undefined) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } else { const morphTargets = geometry.morphTargets; if (morphTargets !== undefined && morphTargets.length > 0) { console.error("THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead."); } } } raycast(raycaster, intersects) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if (material === undefined) return; // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$3.copy(geometry.boundingSphere); _sphere$3.applyMatrix4(matrixWorld); if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; // _inverseMatrix$2.copy(matrixWorld).invert(); _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing if (geometry.boundingBox !== null) { if (_ray$2.intersectsBox(geometry.boundingBox) === false) return; } let intersection; if (geometry.isBufferGeometry) { const index = geometry.index; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const uv = geometry.attributes.uv; const uv2 = geometry.attributes.uv2; const groups = geometry.groups; const drawRange = geometry.drawRange; if (index !== null) { // indexed buffer geometry if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; const start = Math.max(group.start, drawRange.start); const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); for (let j = start, jl = end; j < jl; j += 3) { const a = index.getX(j); const b = index.getX(j + 1); const c = index.getX(j + 2); intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push(intersection); } } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i += 3) { const a = index.getX(i); const b = index.getX(i + 1); const c = index.getX(i + 2); intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics intersects.push(intersection); } } } } else if (position !== undefined) { // non-indexed buffer geometry if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; const start = Math.max(group.start, drawRange.start); const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); for (let j = start, jl = end; j < jl; j += 3) { const a = j; const b = j + 1; const c = j + 2; intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push(intersection); } } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(position.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i += 3) { const a = i; const b = i + 1; const c = i + 2; intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics intersects.push(intersection); } } } } } else if (geometry.isGeometry) { console.error("THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead."); } } } Mesh.prototype.isMesh = true; function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) { let intersect; if (material.side === BackSide) { intersect = ray.intersectTriangle(pC, pB, pA, true, point); } else { intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point); } if (intersect === null) return null; _intersectionPointWorld.copy(point); _intersectionPointWorld.applyMatrix4(object.matrixWorld); const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld); if (distance < raycaster.near || distance > raycaster.far) return null; return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) { _vA$1.fromBufferAttribute(position, a); _vB$1.fromBufferAttribute(position, b); _vC$1.fromBufferAttribute(position, c); const morphInfluences = object.morphTargetInfluences; if (morphPosition && morphInfluences) { _morphA.set(0, 0, 0); _morphB.set(0, 0, 0); _morphC.set(0, 0, 0); for (let i = 0, il = morphPosition.length; i < il; i++) { const influence = morphInfluences[i]; const morphAttribute = morphPosition[i]; if (influence === 0) continue; _tempA.fromBufferAttribute(morphAttribute, a); _tempB.fromBufferAttribute(morphAttribute, b); _tempC.fromBufferAttribute(morphAttribute, c); if (morphTargetsRelative) { _morphA.addScaledVector(_tempA, influence); _morphB.addScaledVector(_tempB, influence); _morphC.addScaledVector(_tempC, influence); } else { _morphA.addScaledVector(_tempA.sub(_vA$1), influence); _morphB.addScaledVector(_tempB.sub(_vB$1), influence); _morphC.addScaledVector(_tempC.sub(_vC$1), influence); } } _vA$1.add(_morphA); _vB$1.add(_morphB); _vC$1.add(_morphC); } if (object.isSkinnedMesh) { object.boneTransform(a, _vA$1); object.boneTransform(b, _vB$1); object.boneTransform(c, _vC$1); } const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint); if (intersection) { if (uv) { _uvA$1.fromBufferAttribute(uv, a); _uvB$1.fromBufferAttribute(uv, b); _uvC$1.fromBufferAttribute(uv, c); intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); } if (uv2) { _uvA$1.fromBufferAttribute(uv2, a); _uvB$1.fromBufferAttribute(uv2, b); _uvC$1.fromBufferAttribute(uv2, c); intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()); } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal); intersection.face = face; } return intersection; } class BoxGeometry extends BufferGeometry { constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) { super(); this.type = "BoxGeometry"; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; const scope = this; // segments widthSegments = Math.floor(widthSegments); heightSegments = Math.floor(heightSegments); depthSegments = Math.floor(depthSegments); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let numberOfVertices = 0; let groupStart = 0; // build each side of the box geometry buildPlane("z", "y", "x", -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px buildPlane("z", "y", "x", 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx buildPlane("x", "z", "y", 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py buildPlane("x", "z", "y", 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny buildPlane("x", "y", "z", 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz buildPlane("x", "y", "z", -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz // build geometry this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) { const segmentWidth = width / gridX; const segmentHeight = height / gridY; const widthHalf = width / 2; const heightHalf = height / 2; const depthHalf = depth / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); // generate vertices, normals and uvs for (let iy = 0; iy < gridY1; iy++) { const y = iy * segmentHeight - heightHalf; for (let ix = 0; ix < gridX1; ix++) { const x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[u] = x * udir; vector[v] = y * vdir; vector[w] = depthHalf; // now apply vector to vertex buffer vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component vector[u] = 0; vector[v] = 0; vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer normals.push(vector.x, vector.y, vector.z); // uvs uvs.push(ix / gridX); uvs.push(1 - iy / gridY); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * (iy + 1); const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1); const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces indices.push(a, b, d); indices.push(b, c, d); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } static fromJSON(data) { return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments); } } /** * Uniform Utilities */ function cloneUniforms(src) { const dst = {}; for (const u in src) { dst[u] = {}; for (const p in src[u]) { const property = src[u][p]; if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) { dst[u][p] = property.clone(); } else if (Array.isArray(property)) { dst[u][p] = property.slice(); } else { dst[u][p] = property; } } } return dst; } function mergeUniforms(uniforms) { const merged = {}; for (let u = 0; u < uniforms.length; u++) { const tmp = cloneUniforms(uniforms[u]); for (const p in tmp) { merged[p] = tmp[p]; } } return merged; } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() { gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }"; var default_fragment = "void main() { gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 ); }"; /** * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: * } */ class ShaderMaterial extends Material { constructor(parameters) { super(); this.type = "ShaderMaterial"; this.defines = {}; this.uniforms = {}; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD }; // When rendered geometry doesn"t include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { "color": [1, 1, 1], "uv": [0, 0], "uv2": [0, 0] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if (parameters !== undefined) { if (parameters.attributes !== undefined) { console.error("THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead."); } this.setValues(parameters); } } copy(source) { super.copy(source); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms(source.uniforms); this.defines = Object.assign({}, source.defines); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.lights = source.lights; this.clipping = source.clipping; this.extensions = Object.assign({}, source.extensions); this.glslVersion = source.glslVersion; return this; } toJSON(meta) { const data = super.toJSON(meta); data.glslVersion = this.glslVersion; data.uniforms = {}; for (const name in this.uniforms) { const uniform = this.uniforms[name]; const value = uniform.value; if (value && value.isTexture) { data.uniforms[name] = { type: "t", value: value.toJSON(meta).uuid }; } else if (value && value.isColor) { data.uniforms[name] = { type: "c", value: value.getHex() }; } else if (value && value.isVector2) { data.uniforms[name] = { type: "v2", value: value.toArray() }; } else if (value && value.isVector3) { data.uniforms[name] = { type: "v3", value: value.toArray() }; } else if (value && value.isVector4) { data.uniforms[name] = { type: "v4", value: value.toArray() }; } else if (value && value.isMatrix3) { data.uniforms[name] = { type: "m3", value: value.toArray() }; } else if (value && value.isMatrix4) { data.uniforms[name] = { type: "m4", value: value.toArray() }; } else { data.uniforms[name] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if (Object.keys(this.defines).length > 0) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; const extensions = {}; for (const key in this.extensions) { if (this.extensions[key] === true) extensions[key] = true; } if (Object.keys(extensions).length > 0) data.extensions = extensions; return data; } } ShaderMaterial.prototype.isShaderMaterial = true; class Camera extends Object3D { constructor() { super(); this.type = "Camera"; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); } copy(source, recursive) { super.copy(source, recursive); this.matrixWorldInverse.copy(source.matrixWorldInverse); this.projectionMatrix.copy(source.projectionMatrix); this.projectionMatrixInverse.copy(source.projectionMatrixInverse); return this; } getWorldDirection(target) { this.updateWorldMatrix(true, false); const e = this.matrixWorld.elements; return target.set(-e[8], -e[9], -e[10]).normalize(); } updateMatrixWorld(force) { super.updateMatrixWorld(force); this.matrixWorldInverse.copy(this.matrixWorld).invert(); } updateWorldMatrix(updateParents, updateChildren) { super.updateWorldMatrix(updateParents, updateChildren); this.matrixWorldInverse.copy(this.matrixWorld).invert(); } clone() { return new this.constructor().copy(this); } } Camera.prototype.isCamera = true; class PerspectiveCamera extends Camera { constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) { super(); this.type = "PerspectiveCamera"; this.fov = fov; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } copy(source, recursive) { super.copy(source, recursive); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign({}, source.view); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength(focalLength) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom); } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min(this.aspect, 1); } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max(this.aspect, 1); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset(fullWidth, fullHeight, x, y, width, height) { this.aspect = fullWidth / fullHeight; if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if (this.view !== null) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = -0.5 * width; const view = this.view; if (this.view !== null && this.view.enabled) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if (skew !== 0) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far); this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); } toJSON(meta) { const data = super.toJSON(meta); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if (this.view !== null) data.object.view = Object.assign({}, this.view); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } PerspectiveCamera.prototype.isPerspectiveCamera = true; const fov = 90, aspect = 1; class CubeCamera extends Object3D { constructor(near, far, renderTarget) { super(); this.type = "CubeCamera"; if (renderTarget.isWebGLCubeRenderTarget !== true) { console.error("THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter."); return; } this.renderTarget = renderTarget; const cameraPX = new PerspectiveCamera(fov, aspect, near, far); cameraPX.layers = this.layers; cameraPX.up.set(0, -1, 0); cameraPX.lookAt(new Vector3(1, 0, 0)); this.add(cameraPX); const cameraNX = new PerspectiveCamera(fov, aspect, near, far); cameraNX.layers = this.layers; cameraNX.up.set(0, -1, 0); cameraNX.lookAt(new Vector3(-1, 0, 0)); this.add(cameraNX); const cameraPY = new PerspectiveCamera(fov, aspect, near, far); cameraPY.layers = this.layers; cameraPY.up.set(0, 0, 1); cameraPY.lookAt(new Vector3(0, 1, 0)); this.add(cameraPY); const cameraNY = new PerspectiveCamera(fov, aspect, near, far); cameraNY.layers = this.layers; cameraNY.up.set(0, 0, -1); cameraNY.lookAt(new Vector3(0, -1, 0)); this.add(cameraNY); const cameraPZ = new PerspectiveCamera(fov, aspect, near, far); cameraPZ.layers = this.layers; cameraPZ.up.set(0, -1, 0); cameraPZ.lookAt(new Vector3(0, 0, 1)); this.add(cameraPZ); const cameraNZ = new PerspectiveCamera(fov, aspect, near, far); cameraNZ.layers = this.layers; cameraNZ.up.set(0, -1, 0); cameraNZ.lookAt(new Vector3(0, 0, -1)); this.add(cameraNZ); } update(renderer, scene) { if (this.parent === null) this.updateMatrixWorld(); const renderTarget = this.renderTarget; const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children; const currentXrEnabled = renderer.xr.enabled; const currentRenderTarget = renderer.getRenderTarget(); renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget(renderTarget, 0); renderer.render(scene, cameraPX); renderer.setRenderTarget(renderTarget, 1); renderer.render(scene, cameraNX); renderer.setRenderTarget(renderTarget, 2); renderer.render(scene, cameraPY); renderer.setRenderTarget(renderTarget, 3); renderer.render(scene, cameraNY); renderer.setRenderTarget(renderTarget, 4); renderer.render(scene, cameraPZ); renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget(renderTarget, 5); renderer.render(scene, cameraNZ); renderer.setRenderTarget(currentRenderTarget); renderer.xr.enabled = currentXrEnabled; renderTarget.texture.needsPMREMUpdate = true; } } class CubeTexture extends Texture { constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding); this.flipY = false; } get images() { return this.image; } set images(value) { this.image = value; } } CubeTexture.prototype.isCubeTexture = true; class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor(size, options, dummy) { if (Number.isInteger(options)) { console.warn("THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )"); options = dummy; } super(size, size, options); options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990"s -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding); this.texture.isRenderTargetTexture = true; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; } fromEquirectangularTexture(renderer, texture) { this.texture.type = texture.type; this.texture.format = RGBAFormat; // see #18859 this.texture.encoding = texture.encoding; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null } }, vertexShader: /* glsl */ ` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */ ` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` }; const geometry = new BoxGeometry(5, 5, 5); const material = new ShaderMaterial({ name: "CubemapFromEquirect", uniforms: cloneUniforms(shader.uniforms), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending }); material.uniforms.tEquirect.value = texture; const mesh = new Mesh(geometry, material); const currentMinFilter = texture.minFilter; // Avoid blurred poles if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter; const camera = new CubeCamera(1, 10, this); camera.update(renderer, mesh); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear(renderer, color, depth, stencil) { const currentRenderTarget = renderer.getRenderTarget(); for (let i = 0; i < 6; i++) { renderer.setRenderTarget(this, i); renderer.clear(color, depth, stencil); } renderer.setRenderTarget(currentRenderTarget); } } WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; const _vector1 = /*@__PURE__*/new Vector3(); const _vector2 = /*@__PURE__*/new Vector3(); const _normalMatrix = /*@__PURE__*/new Matrix3(); class Plane { constructor(normal = new Vector3(1, 0, 0), constant = 0) { // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set(normal, constant) { this.normal.copy(normal); this.constant = constant; return this; } setComponents(x, y, z, w) { this.normal.set(x, y, z); this.constant = w; return this; } setFromNormalAndCoplanarPoint(normal, point) { this.normal.copy(normal); this.constant = -point.dot(this.normal); return this; } setFromCoplanarPoints(a, b, c) { const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint(normal, a); return this; } copy(plane) { this.normal.copy(plane.normal); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar(inverseNormalLength); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= -1; this.normal.negate(); return this; } distanceToPoint(point) { return this.normal.dot(point) + this.constant; } distanceToSphere(sphere) { return this.distanceToPoint(sphere.center) - sphere.radius; } projectPoint(point, target) { return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point); } intersectLine(line, target) { const direction = line.delta(_vector1); const denominator = this.normal.dot(direction); if (denominator === 0) { // line is coplanar, return origin if (this.distanceToPoint(line.start) === 0) { return target.copy(line.start); } // Unsure if this is the correct method to handle this case. return null; } const t = -(line.start.dot(this.normal) + this.constant) / denominator; if (t < 0 || t > 1) { return null; } return target.copy(direction).multiplyScalar(t).add(line.start); } intersectsLine(line) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint(line.start); const endSign = this.distanceToPoint(line.end); return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0; } intersectsBox(box) { return box.intersectsPlane(this); } intersectsSphere(sphere) { return sphere.intersectsPlane(this); } coplanarPoint(target) { return target.copy(this.normal).multiplyScalar(-this.constant); } applyMatrix4(matrix, optionalNormalMatrix) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix); const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix); const normal = this.normal.applyMatrix3(normalMatrix).normalize(); this.constant = -referencePoint.dot(normal); return this; } translate(offset) { this.constant -= offset.dot(this.normal); return this; } equals(plane) { return plane.normal.equals(this.normal) && plane.constant === this.constant; } clone() { return new this.constructor().copy(this); } } Plane.prototype.isPlane = true; const _sphere$2 = /*@__PURE__*/new Sphere(); const _vector$7 = /*@__PURE__*/new Vector3(); class Frustum { constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) { this.planes = [p0, p1, p2, p3, p4, p5]; } set(p0, p1, p2, p3, p4, p5) { const planes = this.planes; planes[0].copy(p0); planes[1].copy(p1); planes[2].copy(p2); planes[3].copy(p3); planes[4].copy(p4); planes[5].copy(p5); return this; } copy(frustum) { const planes = this.planes; for (let i = 0; i < 6; i++) { planes[i].copy(frustum.planes[i]); } return this; } setFromProjectionMatrix(m) { const planes = this.planes; const me = m.elements; const me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3]; const me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7]; const me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11]; const me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15]; planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize(); planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize(); planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize(); planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize(); planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize(); planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize(); return this; } intersectsObject(object) { const geometry = object.geometry; if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld); return this.intersectsSphere(_sphere$2); } intersectsSprite(sprite) { _sphere$2.center.set(0, 0, 0); _sphere$2.radius = 0.7071067811865476; _sphere$2.applyMatrix4(sprite.matrixWorld); return this.intersectsSphere(_sphere$2); } intersectsSphere(sphere) { const planes = this.planes; const center = sphere.center; const negRadius = -sphere.radius; for (let i = 0; i < 6; i++) { const distance = planes[i].distanceToPoint(center); if (distance < negRadius) { return false; } } return true; } intersectsBox(box) { const planes = this.planes; for (let i = 0; i < 6; i++) { const plane = planes[i]; // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if (plane.distanceToPoint(_vector$7) < 0) { return false; } } return true; } containsPoint(point) { const planes = this.planes; for (let i = 0; i < 6; i++) { if (planes[i].distanceToPoint(point) < 0) { return false; } } return true; } clone() { return new this.constructor().copy(this); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame(time, frame) { animationLoop(time, frame); requestId = context.requestAnimationFrame(onAnimationFrame); } return { start: function () { if (isAnimating === true) return; if (animationLoop === null) return; requestId = context.requestAnimationFrame(onAnimationFrame); isAnimating = true; }, stop: function () { context.cancelAnimationFrame(requestId); isAnimating = false; }, setAnimationLoop: function (callback) { animationLoop = callback; }, setContext: function (value) { context = value; } }; } function WebGLAttributes(gl, capabilities) { const isWebGL2 = capabilities.isWebGL2; const buffers = new WeakMap(); function createBuffer(attribute, bufferType) { const array = attribute.array; const usage = attribute.usage; const buffer = gl.createBuffer(); gl.bindBuffer(bufferType, buffer); gl.bufferData(bufferType, array, usage); attribute.onUploadCallback(); let type = gl.FLOAT; if (array instanceof Float32Array) { type = gl.FLOAT; } else if (array instanceof Float64Array) { console.warn("THREE.WebGLAttributes: Unsupported data buffer format: Float64Array."); } else if (array instanceof Uint16Array) { if (attribute.isFloat16BufferAttribute) { if (isWebGL2) { type = gl.HALF_FLOAT; } else { console.warn("THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2."); } } else { type = gl.UNSIGNED_SHORT; } } else if (array instanceof Int16Array) { type = gl.SHORT; } else if (array instanceof Uint32Array) { type = gl.UNSIGNED_INT; } else if (array instanceof Int32Array) { type = gl.INT; } else if (array instanceof Int8Array) { type = gl.BYTE; } else if (array instanceof Uint8Array) { type = gl.UNSIGNED_BYTE; } else if (array instanceof Uint8ClampedArray) { type = gl.UNSIGNED_BYTE; } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version }; } function updateBuffer(buffer, attribute, bufferType) { const array = attribute.array; const updateRange = attribute.updateRange; gl.bindBuffer(bufferType, buffer); if (updateRange.count === -1) { // Not using update ranges gl.bufferSubData(bufferType, 0, array); } else { if (isWebGL2) { gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count); } else { gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count)); } updateRange.count = -1; // reset range } } // function get(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; return buffers.get(attribute); } function remove(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; const data = buffers.get(attribute); if (data) { gl.deleteBuffer(data.buffer); buffers.delete(attribute); } } function update(attribute, bufferType) { if (attribute.isGLBufferAttribute) { const cached = buffers.get(attribute); if (!cached || cached.version < attribute.version) { buffers.set(attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version }); } return; } if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; const data = buffers.get(attribute); if (data === undefined) { buffers.set(attribute, createBuffer(attribute, bufferType)); } else if (data.version < attribute.version) { updateBuffer(data.buffer, attribute, bufferType); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } class PlaneGeometry extends BufferGeometry { constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) { super(); this.type = "PlaneGeometry"; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor(widthSegments); const gridY = Math.floor(heightSegments); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; // const indices = []; const vertices = []; const normals = []; const uvs = []; for (let iy = 0; iy < gridY1; iy++) { const y = iy * segment_height - height_half; for (let ix = 0; ix < gridX1; ix++) { const x = ix * segment_width - width_half; vertices.push(x, -y, 0); normals.push(0, 0, 1); uvs.push(ix / gridX); uvs.push(1 - iy / gridY); } } for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = ix + gridX1 * iy; const b = ix + gridX1 * (iy + 1); const c = ix + 1 + gridX1 * (iy + 1); const d = ix + 1 + gridX1 * iy; indices.push(a, b, d); indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); } static fromJSON(data) { return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments); } } var alphamap_fragment = "#ifdef USE_ALPHAMAP diffuseColor.a *= texture2D( alphaMap, vUv ).g; #endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP uniform sampler2D alphaMap; #endif"; var alphatest_fragment = "#ifdef USE_ALPHATEST if ( diffuseColor.a < alphaTest ) discard; #endif"; var alphatest_pars_fragment = "#ifdef USE_ALPHATEST uniform float alphaTest; #endif"; var aomap_fragment = "#ifdef USE_AOMAP float ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0; reflectedLight.indirectDiffuse *= ambientOcclusion; #if defined( USE_ENVMAP ) && defined( STANDARD ) float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness ); #endif #endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP uniform sampler2D aoMap; uniform float aoMapIntensity; #endif"; var begin_vertex = "vec3 transformed = vec3( position );"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal ); #ifdef USE_TANGENT vec3 objectTangent = vec3( tangent.xyz ); #endif"; var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) { return RECIPROCAL_PI * diffuseColor; } vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) { float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH ); return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel ); } float V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) { float a2 = pow2( alpha ); float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); return 0.5 / max( gv + gl, EPSILON ); } float D_GGX( const in float alpha, const in float dotNH ) { float a2 = pow2( alpha ); float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; return RECIPROCAL_PI * a2 / pow2( denom ); } vec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) { float alpha = pow2( roughness ); vec3 halfDir = normalize( lightDir + viewDir ); float dotNL = saturate( dot( normal, lightDir ) ); float dotNV = saturate( dot( normal, viewDir ) ); float dotNH = saturate( dot( normal, halfDir ) ); float dotVH = saturate( dot( viewDir, halfDir ) ); vec3 F = F_Schlick( f0, f90, dotVH ); float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV ); float D = D_GGX( alpha, dotNH ); return F * ( V * D ); } vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) { const float LUT_SIZE = 64.0; const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; const float LUT_BIAS = 0.5 / LUT_SIZE; float dotNV = saturate( dot( N, V ) ); vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) ); uv = uv * LUT_SCALE + LUT_BIAS; return uv; } float LTC_ClippedSphereFormFactor( const in vec3 f ) { float l = length( f ); return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 ); } vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) { float x = dot( v1, v2 ); float y = abs( x ); float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y; float b = 3.4175940 + ( 4.1616724 + y ) * y; float v = a / b; float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v; return cross( v1, v2 ) * theta_sintheta; } vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) { vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ]; vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ]; vec3 lightNormal = cross( v1, v2 ); if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 ); vec3 T1, T2; T1 = normalize( V - N * dot( V, N ) ); T2 = - cross( N, T1 ); mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) ); vec3 coords[ 4 ]; coords[ 0 ] = mat * ( rectCoords[ 0 ] - P ); coords[ 1 ] = mat * ( rectCoords[ 1 ] - P ); coords[ 2 ] = mat * ( rectCoords[ 2 ] - P ); coords[ 3 ] = mat * ( rectCoords[ 3 ] - P ); coords[ 0 ] = normalize( coords[ 0 ] ); coords[ 1 ] = normalize( coords[ 1 ] ); coords[ 2 ] = normalize( coords[ 2 ] ); coords[ 3 ] = normalize( coords[ 3 ] ); vec3 vectorFormFactor = vec3( 0.0 ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] ); vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] ); float result = LTC_ClippedSphereFormFactor( vectorFormFactor ); return vec3( result ); } float G_BlinnPhong_Implicit( ) { return 0.25; } float D_BlinnPhong( const in float shininess, const in float dotNH ) { return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess ); } vec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) { vec3 halfDir = normalize( lightDir + viewDir ); float dotNH = saturate( dot( normal, halfDir ) ); float dotVH = saturate( dot( viewDir, halfDir ) ); vec3 F = F_Schlick( specularColor, 1.0, dotVH ); float G = G_BlinnPhong_Implicit( ); float D = D_BlinnPhong( shininess, dotNH ); return F * ( G * D ); } #if defined( USE_SHEEN ) float D_Charlie( float roughness, float dotNH ) { float alpha = pow2( roughness ); float invAlpha = 1.0 / alpha; float cos2h = dotNH * dotNH; float sin2h = max( 1.0 - cos2h, 0.0078125 ); return ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI ); } float V_Neubelt( float dotNV, float dotNL ) { return saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) ); } vec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) { vec3 halfDir = normalize( lightDir + viewDir ); float dotNL = saturate( dot( normal, lightDir ) ); float dotNV = saturate( dot( normal, viewDir ) ); float dotNH = saturate( dot( normal, halfDir ) ); float D = D_Charlie( sheenRoughness, dotNH ); float V = V_Neubelt( dotNV, dotNL ); return sheenColor * ( D * V ); } #endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP uniform sampler2D bumpMap; uniform float bumpScale; vec2 dHdxy_fwd() { vec2 dSTdx = dFdx( vUv ); vec2 dSTdy = dFdy( vUv ); float Hll = bumpScale * texture2D( bumpMap, vUv ).x; float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll; float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll; return vec2( dBx, dBy ); } vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) { vec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) ); vec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) ); vec3 vN = surf_norm; vec3 R1 = cross( vSigmaY, vN ); vec3 R2 = cross( vN, vSigmaX ); float fDet = dot( vSigmaX, R1 ) * faceDirection; vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 ); return normalize( abs( fDet ) * surf_norm - vGrad ); } #endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0 vec4 plane; #pragma unroll_loop_start for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) { plane = clippingPlanes[ i ]; if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard; } #pragma unroll_loop_end #if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES bool clipped = true; #pragma unroll_loop_start for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) { plane = clippingPlanes[ i ]; clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped; } #pragma unroll_loop_end if ( clipped ) discard; #endif #endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0 varying vec3 vClipPosition; uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ]; #endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 varying vec3 vClipPosition; #endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 vClipPosition = - mvPosition.xyz; #endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA ) diffuseColor *= vColor; #elif defined( USE_COLOR ) diffuseColor.rgb *= vColor; #endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA ) varying vec4 vColor; #elif defined( USE_COLOR ) varying vec3 vColor; #endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA ) varying vec4 vColor; #elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) varying vec3 vColor; #endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA ) vColor = vec4( 1.0 ); #elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) vColor = vec3( 1.0 ); #endif #ifdef USE_COLOR vColor *= color; #endif #ifdef USE_INSTANCING_COLOR vColor.xyz *= instanceColor.xyz; #endif"; var common = "#define PI 3.141592653589793 #define PI2 6.283185307179586 #define PI_HALF 1.5707963267948966 #define RECIPROCAL_PI 0.3183098861837907 #define RECIPROCAL_PI2 0.15915494309189535 #define EPSILON 1e-6 #ifndef saturate #define saturate( a ) clamp( a, 0.0, 1.0 ) #endif #define whiteComplement( a ) ( 1.0 - saturate( a ) ) float pow2( const in float x ) { return x*x; } float pow3( const in float x ) { return x*x*x; } float pow4( const in float x ) { float x2 = x*x; return x2*x2; } float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); } float average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); } highp float rand( const in vec2 uv ) { const highp float a = 12.9898, b = 78.233, c = 43758.5453; highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI ); return fract( sin( sn ) * c ); } #ifdef HIGH_PRECISION float precisionSafeLength( vec3 v ) { return length( v ); } #else float precisionSafeLength( vec3 v ) { float maxComponent = max3( abs( v ) ); return length( v / maxComponent ) * maxComponent; } #endif struct IncidentLight { vec3 color; vec3 direction; bool visible; }; struct ReflectedLight { vec3 directDiffuse; vec3 directSpecular; vec3 indirectDiffuse; vec3 indirectSpecular; }; struct GeometricContext { vec3 position; vec3 normal; vec3 viewDir; #ifdef USE_CLEARCOAT vec3 clearcoatNormal; #endif }; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz ); } mat3 transposeMat3( const in mat3 m ) { mat3 tmp; tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x ); tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y ); tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z ); return tmp; } float linearToRelativeLuminance( const in vec3 color ) { vec3 weights = vec3( 0.2126, 0.7152, 0.0722 ); return dot( weights, color.rgb ); } bool isPerspectiveMatrix( mat4 m ) { return m[ 2 ][ 3 ] == - 1.0; } vec2 equirectUv( in vec3 dir ) { float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5; float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5; return vec2( u, v ); }"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV #define cubeUV_maxMipLevel 8.0 #define cubeUV_minMipLevel 4.0 #define cubeUV_maxTileSize 256.0 #define cubeUV_minTileSize 16.0 float getFace( vec3 direction ) { vec3 absDirection = abs( direction ); float face = - 1.0; if ( absDirection.x > absDirection.z ) { if ( absDirection.x > absDirection.y ) face = direction.x > 0.0 ? 0.0 : 3.0; else face = direction.y > 0.0 ? 1.0 : 4.0; } else { if ( absDirection.z > absDirection.y ) face = direction.z > 0.0 ? 2.0 : 5.0; else face = direction.y > 0.0 ? 1.0 : 4.0; } return face; } vec2 getUV( vec3 direction, float face ) { vec2 uv; if ( face == 0.0 ) { uv = vec2( direction.z, direction.y ) / abs( direction.x ); } else if ( face == 1.0 ) { uv = vec2( - direction.x, - direction.z ) / abs( direction.y ); } else if ( face == 2.0 ) { uv = vec2( - direction.x, direction.y ) / abs( direction.z ); } else if ( face == 3.0 ) { uv = vec2( - direction.z, direction.y ) / abs( direction.x ); } else if ( face == 4.0 ) { uv = vec2( - direction.x, direction.z ) / abs( direction.y ); } else { uv = vec2( direction.x, direction.y ) / abs( direction.z ); } return 0.5 * ( uv + 1.0 ); } vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) { float face = getFace( direction ); float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 ); mipInt = max( mipInt, cubeUV_minMipLevel ); float faceSize = exp2( mipInt ); float texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize ); vec2 uv = getUV( direction, face ) * ( faceSize - 1.0 ) + 0.5; if ( face > 2.0 ) { uv.y += faceSize; face -= 3.0; } uv.x += face * faceSize; if ( mipInt < cubeUV_maxMipLevel ) { uv.y += 2.0 * cubeUV_maxTileSize; } uv.y += filterInt * 2.0 * cubeUV_minTileSize; uv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize ); uv *= texelSize; return texture2D( envMap, uv ).rgb; } #define r0 1.0 #define v0 0.339 #define m0 - 2.0 #define r1 0.8 #define v1 0.276 #define m1 - 1.0 #define r4 0.4 #define v4 0.046 #define m4 2.0 #define r5 0.305 #define v5 0.016 #define m5 3.0 #define r6 0.21 #define v6 0.0038 #define m6 4.0 float roughnessToMip( float roughness ) { float mip = 0.0; if ( roughness >= r1 ) { mip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0; } else if ( roughness >= r4 ) { mip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1; } else if ( roughness >= r5 ) { mip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4; } else if ( roughness >= r6 ) { mip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5; } else { mip = - 2.0 * log2( 1.16 * roughness ); } return mip; } vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) { float mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel ); float mipF = fract( mip ); float mipInt = floor( mip ); vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt ); if ( mipF == 0.0 ) { return vec4( color0, 1.0 ); } else { vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 ); return vec4( mix( color0, color1, mipF ), 1.0 ); } } #endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal; #ifdef USE_INSTANCING mat3 m = mat3( instanceMatrix ); transformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) ); transformedNormal = m * transformedNormal; #endif transformedNormal = normalMatrix * transformedNormal; #ifdef FLIP_SIDED transformedNormal = - transformedNormal; #endif #ifdef USE_TANGENT vec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz; #ifdef FLIP_SIDED transformedTangent = - transformedTangent; #endif #endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP uniform sampler2D displacementMap; uniform float displacementScale; uniform float displacementBias; #endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP transformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias ); #endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP vec4 emissiveColor = texture2D( emissiveMap, vUv ); totalEmissiveRadiance *= emissiveColor.rgb; #endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP uniform sampler2D emissiveMap; #endif"; var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var encodings_pars_fragment = "vec4 LinearToLinear( in vec4 value ) { return value; } vec4 LinearTosRGB( in vec4 value ) { return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a ); }"; var envmap_fragment = "#ifdef USE_ENVMAP #ifdef ENV_WORLDPOS vec3 cameraToFrag; if ( isOrthographic ) { cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) ); } else { cameraToFrag = normalize( vWorldPosition - cameraPosition ); } vec3 worldNormal = inverseTransformDirection( normal, viewMatrix ); #ifdef ENVMAP_MODE_REFLECTION vec3 reflectVec = reflect( cameraToFrag, worldNormal ); #else vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio ); #endif #else vec3 reflectVec = vReflect; #endif #ifdef ENVMAP_TYPE_CUBE vec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) ); #elif defined( ENVMAP_TYPE_CUBE_UV ) vec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 ); #else vec4 envColor = vec4( 0.0 ); #endif #ifdef ENVMAP_BLENDING_MULTIPLY outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity ); #elif defined( ENVMAP_BLENDING_MIX ) outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity ); #elif defined( ENVMAP_BLENDING_ADD ) outgoingLight += envColor.xyz * specularStrength * reflectivity; #endif #endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP uniform float envMapIntensity; uniform float flipEnvMap; #ifdef ENVMAP_TYPE_CUBE uniform samplerCube envMap; #else uniform sampler2D envMap; #endif #endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP uniform float reflectivity; #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) #define ENV_WORLDPOS #endif #ifdef ENV_WORLDPOS varying vec3 vWorldPosition; uniform float refractionRatio; #else varying vec3 vReflect; #endif #endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG ) #define ENV_WORLDPOS #endif #ifdef ENV_WORLDPOS varying vec3 vWorldPosition; #else varying vec3 vReflect; uniform float refractionRatio; #endif #endif"; var envmap_vertex = "#ifdef USE_ENVMAP #ifdef ENV_WORLDPOS vWorldPosition = worldPosition.xyz; #else vec3 cameraToVertex; if ( isOrthographic ) { cameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) ); } else { cameraToVertex = normalize( worldPosition.xyz - cameraPosition ); } vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix ); #ifdef ENVMAP_MODE_REFLECTION vReflect = reflect( cameraToVertex, worldNormal ); #else vReflect = refract( cameraToVertex, worldNormal, refractionRatio ); #endif #endif #endif"; var fog_vertex = "#ifdef USE_FOG vFogDepth = - mvPosition.z; #endif"; var fog_pars_vertex = "#ifdef USE_FOG varying float vFogDepth; #endif"; var fog_fragment = "#ifdef USE_FOG #ifdef FOG_EXP2 float fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth ); #else float fogFactor = smoothstep( fogNear, fogFar, vFogDepth ); #endif gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor ); #endif"; var fog_pars_fragment = "#ifdef USE_FOG uniform vec3 fogColor; varying float vFogDepth; #ifdef FOG_EXP2 uniform float fogDensity; #else uniform float fogNear; uniform float fogFar; #endif #endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP uniform sampler2D gradientMap; #endif vec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) { float dotNL = dot( normal, lightDirection ); vec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 ); #ifdef USE_GRADIENTMAP return vec3( texture2D( gradientMap, coord ).r ); #else return ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 ); #endif }"; var lightmap_fragment = "#ifdef USE_LIGHTMAP vec4 lightMapTexel = texture2D( lightMap, vUv2 ); vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity; #ifndef PHYSICALLY_CORRECT_LIGHTS lightMapIrradiance *= PI; #endif reflectedLight.indirectDiffuse += lightMapIrradiance; #endif"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP uniform sampler2D lightMap; uniform float lightMapIntensity; #endif"; var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 ); GeometricContext geometry; geometry.position = mvPosition.xyz; geometry.normal = normalize( transformedNormal ); geometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz ); GeometricContext backGeometry; backGeometry.position = geometry.position; backGeometry.normal = -geometry.normal; backGeometry.viewDir = geometry.viewDir; vLightFront = vec3( 0.0 ); vIndirectFront = vec3( 0.0 ); #ifdef DOUBLE_SIDED vLightBack = vec3( 0.0 ); vIndirectBack = vec3( 0.0 ); #endif IncidentLight directLight; float dotNL; vec3 directLightColor_Diffuse; vIndirectFront += getAmbientLightIrradiance( ambientLightColor ); vIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal ); #ifdef DOUBLE_SIDED vIndirectBack += getAmbientLightIrradiance( ambientLightColor ); vIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal ); #endif #if NUM_POINT_LIGHTS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) { getPointLightInfo( pointLights[ i ], geometry, directLight ); dotNL = dot( geometry.normal, directLight.direction ); directLightColor_Diffuse = directLight.color; vLightFront += saturate( dotNL ) * directLightColor_Diffuse; #ifdef DOUBLE_SIDED vLightBack += saturate( - dotNL ) * directLightColor_Diffuse; #endif } #pragma unroll_loop_end #endif #if NUM_SPOT_LIGHTS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) { getSpotLightInfo( spotLights[ i ], geometry, directLight ); dotNL = dot( geometry.normal, directLight.direction ); directLightColor_Diffuse = directLight.color; vLightFront += saturate( dotNL ) * directLightColor_Diffuse; #ifdef DOUBLE_SIDED vLightBack += saturate( - dotNL ) * directLightColor_Diffuse; #endif } #pragma unroll_loop_end #endif #if NUM_DIR_LIGHTS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) { getDirectionalLightInfo( directionalLights[ i ], geometry, directLight ); dotNL = dot( geometry.normal, directLight.direction ); directLightColor_Diffuse = directLight.color; vLightFront += saturate( dotNL ) * directLightColor_Diffuse; #ifdef DOUBLE_SIDED vLightBack += saturate( - dotNL ) * directLightColor_Diffuse; #endif } #pragma unroll_loop_end #endif #if NUM_HEMI_LIGHTS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) { vIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal ); #ifdef DOUBLE_SIDED vIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal ); #endif } #pragma unroll_loop_end #endif"; var lights_pars_begin = "uniform bool receiveShadow; uniform vec3 ambientLightColor; uniform vec3 lightProbe[ 9 ]; vec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) { float x = normal.x, y = normal.y, z = normal.z; vec3 result = shCoefficients[ 0 ] * 0.886227; result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y; result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z; result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x; result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y; result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z; result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 ); result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z; result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y ); return result; } vec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) { vec3 worldNormal = inverseTransformDirection( normal, viewMatrix ); vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe ); return irradiance; } vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) { vec3 irradiance = ambientLightColor; return irradiance; } float getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) { #if defined ( PHYSICALLY_CORRECT_LIGHTS ) float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 ); if ( cutoffDistance > 0.0 ) { distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) ); } return distanceFalloff; #else if ( cutoffDistance > 0.0 && decayExponent > 0.0 ) { return pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent ); } return 1.0; #endif } float getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) { return smoothstep( coneCosine, penumbraCosine, angleCosine ); } #if NUM_DIR_LIGHTS > 0 struct DirectionalLight { vec3 direction; vec3 color; }; uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ]; void getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) { light.color = directionalLight.color; light.direction = directionalLight.direction; light.visible = true; } #endif #if NUM_POINT_LIGHTS > 0 struct PointLight { vec3 position; vec3 color; float distance; float decay; }; uniform PointLight pointLights[ NUM_POINT_LIGHTS ]; void getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) { vec3 lVector = pointLight.position - geometry.position; light.direction = normalize( lVector ); float lightDistance = length( lVector ); light.color = pointLight.color; light.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay ); light.visible = ( light.color != vec3( 0.0 ) ); } #endif #if NUM_SPOT_LIGHTS > 0 struct SpotLight { vec3 position; vec3 direction; vec3 color; float distance; float decay; float coneCos; float penumbraCos; }; uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ]; void getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) { vec3 lVector = spotLight.position - geometry.position; light.direction = normalize( lVector ); float angleCos = dot( light.direction, spotLight.direction ); float spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos ); if ( spotAttenuation > 0.0 ) { float lightDistance = length( lVector ); light.color = spotLight.color * spotAttenuation; light.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay ); light.visible = ( light.color != vec3( 0.0 ) ); } else { light.color = vec3( 0.0 ); light.visible = false; } } #endif #if NUM_RECT_AREA_LIGHTS > 0 struct RectAreaLight { vec3 color; vec3 position; vec3 halfWidth; vec3 halfHeight; }; uniform sampler2D ltc_1; uniform sampler2D ltc_2; uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ]; #endif #if NUM_HEMI_LIGHTS > 0 struct HemisphereLight { vec3 direction; vec3 skyColor; vec3 groundColor; }; uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ]; vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) { float dotNL = dot( normal, hemiLight.direction ); float hemiDiffuseWeight = 0.5 * dotNL + 0.5; vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight ); return irradiance; } #endif"; var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP ) #ifdef ENVMAP_MODE_REFRACTION uniform float refractionRatio; #endif vec3 getIBLIrradiance( const in vec3 normal ) { #if defined( ENVMAP_TYPE_CUBE_UV ) vec3 worldNormal = inverseTransformDirection( normal, viewMatrix ); vec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 ); return PI * envMapColor.rgb * envMapIntensity; #else return vec3( 0.0 ); #endif } vec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) { #if defined( ENVMAP_TYPE_CUBE_UV ) vec3 reflectVec; #ifdef ENVMAP_MODE_REFLECTION reflectVec = reflect( - viewDir, normal ); reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) ); #else reflectVec = refract( - viewDir, normal, refractionRatio ); #endif reflectVec = inverseTransformDirection( reflectVec, viewMatrix ); vec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness ); return envMapColor.rgb * envMapIntensity; #else return vec3( 0.0 ); #endif } #endif"; var lights_toon_fragment = "ToonMaterial material; material.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition; struct ToonMaterial { vec3 diffuseColor; }; void RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) { vec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color; reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } void RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) { reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } #define RE_Direct RE_Direct_Toon #define RE_IndirectDiffuse RE_IndirectDiffuse_Toon #define Material_LightProbeLOD( material ) (0)"; var lights_phong_fragment = "BlinnPhongMaterial material; material.diffuseColor = diffuseColor.rgb; material.specularColor = specular; material.specularShininess = shininess; material.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition; struct BlinnPhongMaterial { vec3 diffuseColor; vec3 specularColor; float specularShininess; float specularStrength; }; void RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) { float dotNL = saturate( dot( geometry.normal, directLight.direction ) ); vec3 irradiance = dotNL * directLight.color; reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); reflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength; } void RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) { reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } #define RE_Direct RE_Direct_BlinnPhong #define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong #define Material_LightProbeLOD( material ) (0)"; var lights_physical_fragment = "PhysicalMaterial material; material.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor ); vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) ); float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z ); material.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness; material.roughness = min( material.roughness, 1.0 ); #ifdef IOR #ifdef SPECULAR float specularIntensityFactor = specularIntensity; vec3 specularColorFactor = specularColor; #ifdef USE_SPECULARINTENSITYMAP specularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a; #endif #ifdef USE_SPECULARCOLORMAP specularColorFactor *= texture2D( specularColorMap, vUv ).rgb; #endif material.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor ); #else float specularIntensityFactor = 1.0; vec3 specularColorFactor = vec3( 1.0 ); material.specularF90 = 1.0; #endif material.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor ); #else material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor ); material.specularF90 = 1.0; #endif #ifdef USE_CLEARCOAT material.clearcoat = clearcoat; material.clearcoatRoughness = clearcoatRoughness; material.clearcoatF0 = vec3( 0.04 ); material.clearcoatF90 = 1.0; #ifdef USE_CLEARCOATMAP material.clearcoat *= texture2D( clearcoatMap, vUv ).x; #endif #ifdef USE_CLEARCOAT_ROUGHNESSMAP material.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y; #endif material.clearcoat = saturate( material.clearcoat ); material.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 ); material.clearcoatRoughness += geometryRoughness; material.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 ); #endif #ifdef USE_SHEEN material.sheenColor = sheenColor; #ifdef USE_SHEENCOLORMAP material.sheenColor *= texture2D( sheenColorMap, vUv ).rgb; #endif material.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 ); #ifdef USE_SHEENROUGHNESSMAP material.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a; #endif #endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial { vec3 diffuseColor; float roughness; vec3 specularColor; float specularF90; #ifdef USE_CLEARCOAT float clearcoat; float clearcoatRoughness; vec3 clearcoatF0; float clearcoatF90; #endif #ifdef USE_SHEEN vec3 sheenColor; float sheenRoughness; #endif }; vec3 clearcoatSpecular = vec3( 0.0 ); vec3 sheenSpecular = vec3( 0.0 ); float IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness) { float dotNV = saturate( dot( normal, viewDir ) ); float r2 = roughness * roughness; float a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95; float b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72; float DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) ); return saturate( DG * RECIPROCAL_PI ); } vec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) { float dotNV = saturate( dot( normal, viewDir ) ); const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); vec4 r = roughness * c0 + c1; float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y; vec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw; return fab; } vec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) { vec2 fab = DFGApprox( normal, viewDir, roughness ); return specularColor * fab.x + specularF90 * fab.y; } void computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) { vec2 fab = DFGApprox( normal, viewDir, roughness ); vec3 FssEss = specularColor * fab.x + specularF90 * fab.y; float Ess = fab.x + fab.y; float Ems = 1.0 - Ess; vec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619; vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg ); singleScatter += FssEss; multiScatter += Fms * Ems; } #if NUM_RECT_AREA_LIGHTS > 0 void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { vec3 normal = geometry.normal; vec3 viewDir = geometry.viewDir; vec3 position = geometry.position; vec3 lightPos = rectAreaLight.position; vec3 halfWidth = rectAreaLight.halfWidth; vec3 halfHeight = rectAreaLight.halfHeight; vec3 lightColor = rectAreaLight.color; float roughness = material.roughness; vec3 rectCoords[ 4 ]; rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; rectCoords[ 1 ] = lightPos - halfWidth - halfHeight; rectCoords[ 2 ] = lightPos - halfWidth + halfHeight; rectCoords[ 3 ] = lightPos + halfWidth + halfHeight; vec2 uv = LTC_Uv( normal, viewDir, roughness ); vec4 t1 = texture2D( ltc_1, uv ); vec4 t2 = texture2D( ltc_2, uv ); mat3 mInv = mat3( vec3( t1.x, 0, t1.y ), vec3( 0, 1, 0 ), vec3( t1.z, 0, t1.w ) ); vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y ); reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords ); } #endif void RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { float dotNL = saturate( dot( geometry.normal, directLight.direction ) ); vec3 irradiance = dotNL * directLight.color; #ifdef USE_CLEARCOAT float dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) ); vec3 ccIrradiance = dotNLcc * directLight.color; clearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness ); #endif #ifdef USE_SHEEN sheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness ); #endif reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness ); reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } void RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); } void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { #ifdef USE_CLEARCOAT clearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness ); #endif #ifdef USE_SHEEN sheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness ); #endif vec3 singleScattering = vec3( 0.0 ); vec3 multiScattering = vec3( 0.0 ); vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI; computeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering ); vec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) ); reflectedLight.indirectSpecular += radiance * singleScattering; reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance; reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance; } #define RE_Direct RE_Direct_Physical #define RE_Direct_RectArea RE_Direct_RectArea_Physical #define RE_IndirectDiffuse RE_IndirectDiffuse_Physical #define RE_IndirectSpecular RE_IndirectSpecular_Physical float computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) { return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion ); }"; var lights_fragment_begin = " GeometricContext geometry; geometry.position = - vViewPosition; geometry.normal = normal; geometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition ); #ifdef USE_CLEARCOAT geometry.clearcoatNormal = clearcoatNormal; #endif IncidentLight directLight; #if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct ) PointLight pointLight; #if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0 PointLightShadow pointLightShadow; #endif #pragma unroll_loop_start for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) { pointLight = pointLights[ i ]; getPointLightInfo( pointLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS ) pointLightShadow = pointLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0; #endif RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct ) SpotLight spotLight; #if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0 SpotLightShadow spotLightShadow; #endif #pragma unroll_loop_start for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) { spotLight = spotLights[ i ]; getSpotLightInfo( spotLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS ) spotLightShadow = spotLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0; #endif RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct ) DirectionalLight directionalLight; #if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0 DirectionalLightShadow directionalLightShadow; #endif #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) { directionalLight = directionalLights[ i ]; getDirectionalLightInfo( directionalLight, geometry, directLight ); #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS ) directionalLightShadow = directionalLightShadows[ i ]; directLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0; #endif RE_Direct( directLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea ) RectAreaLight rectAreaLight; #pragma unroll_loop_start for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) { rectAreaLight = rectAreaLights[ i ]; RE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight ); } #pragma unroll_loop_end #endif #if defined( RE_IndirectDiffuse ) vec3 iblIrradiance = vec3( 0.0 ); vec3 irradiance = getAmbientLightIrradiance( ambientLightColor ); irradiance += getLightProbeIrradiance( lightProbe, geometry.normal ); #if ( NUM_HEMI_LIGHTS > 0 ) #pragma unroll_loop_start for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) { irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal ); } #pragma unroll_loop_end #endif #endif #if defined( RE_IndirectSpecular ) vec3 radiance = vec3( 0.0 ); vec3 clearcoatRadiance = vec3( 0.0 ); #endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse ) #ifdef USE_LIGHTMAP vec4 lightMapTexel = texture2D( lightMap, vUv2 ); vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity; #ifndef PHYSICALLY_CORRECT_LIGHTS lightMapIrradiance *= PI; #endif irradiance += lightMapIrradiance; #endif #if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV ) iblIrradiance += getIBLIrradiance( geometry.normal ); #endif #endif #if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular ) radiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness ); #ifdef USE_CLEARCOAT clearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness ); #endif #endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse ) RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight ); #endif #if defined( RE_IndirectSpecular ) RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight ); #endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT ) gl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5; #endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT ) uniform float logDepthBufFC; varying float vFragDepth; varying float vIsPerspective; #endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF #ifdef USE_LOGDEPTHBUF_EXT varying float vFragDepth; varying float vIsPerspective; #else uniform float logDepthBufFC; #endif #endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF #ifdef USE_LOGDEPTHBUF_EXT vFragDepth = 1.0 + gl_Position.w; vIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) ); #else if ( isPerspectiveMatrix( projectionMatrix ) ) { gl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0; gl_Position.z *= gl_Position.w; } #endif #endif"; var map_fragment = "#ifdef USE_MAP vec4 sampledDiffuseColor = texture2D( map, vUv ); #ifdef DECODE_VIDEO_TEXTURE sampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w ); #endif diffuseColor *= sampledDiffuseColor; #endif"; var map_pars_fragment = "#ifdef USE_MAP uniform sampler2D map; #endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP ) vec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy; #endif #ifdef USE_MAP diffuseColor *= texture2D( map, uv ); #endif #ifdef USE_ALPHAMAP diffuseColor.a *= texture2D( alphaMap, uv ).g; #endif"; var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP ) uniform mat3 uvTransform; #endif #ifdef USE_MAP uniform sampler2D map; #endif #ifdef USE_ALPHAMAP uniform sampler2D alphaMap; #endif"; var metalnessmap_fragment = "float metalnessFactor = metalness; #ifdef USE_METALNESSMAP vec4 texelMetalness = texture2D( metalnessMap, vUv ); metalnessFactor *= texelMetalness.b; #endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP uniform sampler2D metalnessMap; #endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS objectNormal *= morphTargetBaseInfluence; #ifdef MORPHTARGETS_TEXTURE for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) { if ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ]; } #else objectNormal += morphNormal0 * morphTargetInfluences[ 0 ]; objectNormal += morphNormal1 * morphTargetInfluences[ 1 ]; objectNormal += morphNormal2 * morphTargetInfluences[ 2 ]; objectNormal += morphNormal3 * morphTargetInfluences[ 3 ]; #endif #endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS uniform float morphTargetBaseInfluence; #ifdef MORPHTARGETS_TEXTURE uniform float morphTargetInfluences[ MORPHTARGETS_COUNT ]; uniform sampler2DArray morphTargetsTexture; uniform vec2 morphTargetsTextureSize; vec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) { float texelIndex = float( vertexIndex * stride + offset ); float y = floor( texelIndex / morphTargetsTextureSize.x ); float x = texelIndex - y * morphTargetsTextureSize.x; vec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex ); return texture( morphTargetsTexture, morphUV ).xyz; } #else #ifndef USE_MORPHNORMALS uniform float morphTargetInfluences[ 8 ]; #else uniform float morphTargetInfluences[ 4 ]; #endif #endif #endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS transformed *= morphTargetBaseInfluence; #ifdef MORPHTARGETS_TEXTURE for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) { #ifndef USE_MORPHNORMALS if ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ]; #else if ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ]; #endif } #else transformed += morphTarget0 * morphTargetInfluences[ 0 ]; transformed += morphTarget1 * morphTargetInfluences[ 1 ]; transformed += morphTarget2 * morphTargetInfluences[ 2 ]; transformed += morphTarget3 * morphTargetInfluences[ 3 ]; #ifndef USE_MORPHNORMALS transformed += morphTarget4 * morphTargetInfluences[ 4 ]; transformed += morphTarget5 * morphTargetInfluences[ 5 ]; transformed += morphTarget6 * morphTargetInfluences[ 6 ]; transformed += morphTarget7 * morphTargetInfluences[ 7 ]; #endif #endif #endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0; #ifdef FLAT_SHADED vec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) ); vec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) ); vec3 normal = normalize( cross( fdx, fdy ) ); #else vec3 normal = normalize( vNormal ); #ifdef DOUBLE_SIDED normal = normal * faceDirection; #endif #ifdef USE_TANGENT vec3 tangent = normalize( vTangent ); vec3 bitangent = normalize( vBitangent ); #ifdef DOUBLE_SIDED tangent = tangent * faceDirection; bitangent = bitangent * faceDirection; #endif #if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP ) mat3 vTBN = mat3( tangent, bitangent, normal ); #endif #endif #endif vec3 geometryNormal = normal;"; var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP normal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0; #ifdef FLIP_SIDED normal = - normal; #endif #ifdef DOUBLE_SIDED normal = normal * faceDirection; #endif normal = normalize( normalMatrix * normal ); #elif defined( TANGENTSPACE_NORMALMAP ) vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0; mapN.xy *= normalScale; #ifdef USE_TANGENT normal = normalize( vTBN * mapN ); #else normal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection ); #endif #elif defined( USE_BUMPMAP ) normal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection ); #endif"; var normal_pars_fragment = "#ifndef FLAT_SHADED varying vec3 vNormal; #ifdef USE_TANGENT varying vec3 vTangent; varying vec3 vBitangent; #endif #endif"; var normal_pars_vertex = "#ifndef FLAT_SHADED varying vec3 vNormal; #ifdef USE_TANGENT varying vec3 vTangent; varying vec3 vBitangent; #endif #endif"; var normal_vertex = "#ifndef FLAT_SHADED vNormal = normalize( transformedNormal ); #ifdef USE_TANGENT vTangent = normalize( transformedTangent ); vBitangent = normalize( cross( vNormal, vTangent ) * tangent.w ); #endif #endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP uniform sampler2D normalMap; uniform vec2 normalScale; #endif #ifdef OBJECTSPACE_NORMALMAP uniform mat3 normalMatrix; #endif #if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) ) vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) { vec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) ); vec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) ); vec2 st0 = dFdx( vUv.st ); vec2 st1 = dFdy( vUv.st ); vec3 N = surf_norm; vec3 q1perp = cross( q1, N ); vec3 q0perp = cross( N, q0 ); vec3 T = q1perp * st0.x + q0perp * st1.x; vec3 B = q1perp * st0.y + q0perp * st1.y; float det = max( dot( T, T ), dot( B, B ) ); float scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det ); return normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z ); } #endif"; var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT vec3 clearcoatNormal = geometryNormal; #endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0; clearcoatMapN.xy *= clearcoatNormalScale; #ifdef USE_TANGENT clearcoatNormal = normalize( vTBN * clearcoatMapN ); #else clearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection ); #endif #endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP uniform sampler2D clearcoatMap; #endif #ifdef USE_CLEARCOAT_ROUGHNESSMAP uniform sampler2D clearcoatRoughnessMap; #endif #ifdef USE_CLEARCOAT_NORMALMAP uniform sampler2D clearcoatNormalMap; uniform vec2 clearcoatNormalScale; #endif"; var output_fragment = "#ifdef OPAQUE diffuseColor.a = 1.0; #endif #ifdef USE_TRANSMISSION diffuseColor.a *= transmissionAlpha + 0.1; #endif gl_FragColor = vec4( outgoingLight, diffuseColor.a );"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) { return normalize( normal ) * 0.5 + 0.5; } vec3 unpackRGBToNormal( const in vec3 rgb ) { return 2.0 * rgb.xyz - 1.0; } const float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.; const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. ); const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. ); const float ShiftRight8 = 1. / 256.; vec4 packDepthToRGBA( const in float v ) { vec4 r = vec4( fract( v * PackFactors ), v ); r.yzw -= r.xyz * ShiftRight8; return r * PackUpscale; } float unpackRGBAToDepth( const in vec4 v ) { return dot( v, UnpackFactors ); } vec4 pack2HalfToRGBA( vec2 v ) { vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) ); return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w ); } vec2 unpackRGBATo2Half( vec4 v ) { return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) ); } float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) { return ( viewZ + near ) / ( near - far ); } float orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) { return linearClipZ * ( near - far ) - near; } float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) { return ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ ); } float perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) { return ( near * far ) / ( ( far - near ) * invClipZ - far ); }"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA gl_FragColor.rgb *= gl_FragColor.a; #endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 ); #ifdef USE_INSTANCING mvPosition = instanceMatrix * mvPosition; #endif mvPosition = modelViewMatrix * mvPosition; gl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING gl_FragColor.rgb = dithering( gl_FragColor.rgb ); #endif"; var dithering_pars_fragment = "#ifdef DITHERING vec3 dithering( vec3 color ) { float grid_position = rand( gl_FragCoord.xy ); vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 ); dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position ); return color + dither_shift_RGB; } #endif"; var roughnessmap_fragment = "float roughnessFactor = roughness; #ifdef USE_ROUGHNESSMAP vec4 texelRoughness = texture2D( roughnessMap, vUv ); roughnessFactor *= texelRoughness.g; #endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP uniform sampler2D roughnessMap; #endif"; var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP #if NUM_DIR_LIGHT_SHADOWS > 0 uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ]; varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ]; struct DirectionalLightShadow { float shadowBias; float shadowNormalBias; float shadowRadius; vec2 shadowMapSize; }; uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ]; #endif #if NUM_SPOT_LIGHT_SHADOWS > 0 uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ]; varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ]; struct SpotLightShadow { float shadowBias; float shadowNormalBias; float shadowRadius; vec2 shadowMapSize; }; uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ]; #endif #if NUM_POINT_LIGHT_SHADOWS > 0 uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ]; varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ]; struct PointLightShadow { float shadowBias; float shadowNormalBias; float shadowRadius; vec2 shadowMapSize; float shadowCameraNear; float shadowCameraFar; }; uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ]; #endif float texture2DCompare( sampler2D depths, vec2 uv, float compare ) { return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) ); } vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) { return unpackRGBATo2Half( texture2D( shadow, uv ) ); } float VSMShadow (sampler2D shadow, vec2 uv, float compare ){ float occlusion = 1.0; vec2 distribution = texture2DDistribution( shadow, uv ); float hard_shadow = step( compare , distribution.x ); if (hard_shadow != 1.0 ) { float distance = compare - distribution.x ; float variance = max( 0.00000, distribution.y * distribution.y ); float softness_probability = variance / (variance + distance * distance ); softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 ); } return occlusion; } float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) { float shadow = 1.0; shadowCoord.xyz /= shadowCoord.w; shadowCoord.z += shadowBias; bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 ); bool inFrustum = all( inFrustumVec ); bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 ); bool frustumTest = all( frustumTestVec ); if ( frustumTest ) { #if defined( SHADOWMAP_TYPE_PCF ) vec2 texelSize = vec2( 1.0 ) / shadowMapSize; float dx0 = - texelSize.x * shadowRadius; float dy0 = - texelSize.y * shadowRadius; float dx1 = + texelSize.x * shadowRadius; float dy1 = + texelSize.y * shadowRadius; float dx2 = dx0 / 2.0; float dy2 = dy0 / 2.0; float dx3 = dx1 / 2.0; float dy3 = dy1 / 2.0; shadow = ( texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z ) ) * ( 1.0 / 17.0 ); #elif defined( SHADOWMAP_TYPE_PCF_SOFT ) vec2 texelSize = vec2( 1.0 ) / shadowMapSize; float dx = texelSize.x; float dy = texelSize.y; vec2 uv = shadowCoord.xy; vec2 f = fract( uv * shadowMapSize + 0.5 ); uv -= f * texelSize; shadow = ( texture2DCompare( shadowMap, uv, shadowCoord.z ) + texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) + texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) + texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) + mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ), f.x ) + mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ), f.x ) + mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ), f.y ) + mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ), f.y ) + mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ), f.x ), mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ), f.x ), f.y ) ) * ( 1.0 / 9.0 ); #elif defined( SHADOWMAP_TYPE_VSM ) shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z ); #else shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ); #endif } return shadow; } vec2 cubeToUV( vec3 v, float texelSizeY ) { vec3 absV = abs( v ); float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) ); absV *= scaleToCube; v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY ); vec2 planar = v.xy; float almostATexel = 1.5 * texelSizeY; float almostOne = 1.0 - almostATexel; if ( absV.z >= almostOne ) { if ( v.z > 0.0 ) planar.x = 4.0 - v.x; } else if ( absV.x >= almostOne ) { float signX = sign( v.x ); planar.x = v.z * signX + 2.0 * signX; } else if ( absV.y >= almostOne ) { float signY = sign( v.y ); planar.x = v.x + 2.0 * signY + 2.0; planar.y = v.z * signY - 2.0; } return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 ); } float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) { vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) ); vec3 lightToPosition = shadowCoord.xyz; float dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); dp += shadowBias; vec3 bd3D = normalize( lightToPosition ); #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM ) vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y; return ( texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp ) ) * ( 1.0 / 9.0 ); #else return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ); #endif } #endif"; var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP #if NUM_DIR_LIGHT_SHADOWS > 0 uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ]; varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ]; struct DirectionalLightShadow { float shadowBias; float shadowNormalBias; float shadowRadius; vec2 shadowMapSize; }; uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ]; #endif #if NUM_SPOT_LIGHT_SHADOWS > 0 uniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ]; varying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ]; struct SpotLightShadow { float shadowBias; float shadowNormalBias; float shadowRadius; vec2 shadowMapSize; }; uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ]; #endif #if NUM_POINT_LIGHT_SHADOWS > 0 uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ]; varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ]; struct PointLightShadow { float shadowBias; float shadowNormalBias; float shadowRadius; vec2 shadowMapSize; float shadowCameraNear; float shadowCameraFar; }; uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ]; #endif #endif"; var shadowmap_vertex = "#ifdef USE_SHADOWMAP #if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 vec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix ); vec4 shadowWorldPosition; #endif #if NUM_DIR_LIGHT_SHADOWS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) { shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 ); vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition; } #pragma unroll_loop_end #endif #if NUM_SPOT_LIGHT_SHADOWS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) { shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 ); vSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition; } #pragma unroll_loop_end #endif #if NUM_POINT_LIGHT_SHADOWS > 0 #pragma unroll_loop_start for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) { shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 ); vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition; } #pragma unroll_loop_end #endif #endif"; var shadowmask_pars_fragment = "float getShadowMask() { float shadow = 1.0; #ifdef USE_SHADOWMAP #if NUM_DIR_LIGHT_SHADOWS > 0 DirectionalLightShadow directionalLight; #pragma unroll_loop_start for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) { directionalLight = directionalLightShadows[ i ]; shadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0; } #pragma unroll_loop_end #endif #if NUM_SPOT_LIGHT_SHADOWS > 0 SpotLightShadow spotLight; #pragma unroll_loop_start for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) { spotLight = spotLightShadows[ i ]; shadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0; } #pragma unroll_loop_end #endif #if NUM_POINT_LIGHT_SHADOWS > 0 PointLightShadow pointLight; #pragma unroll_loop_start for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) { pointLight = pointLightShadows[ i ]; shadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0; } #pragma unroll_loop_end #endif #endif return shadow; }"; var skinbase_vertex = "#ifdef USE_SKINNING mat4 boneMatX = getBoneMatrix( skinIndex.x ); mat4 boneMatY = getBoneMatrix( skinIndex.y ); mat4 boneMatZ = getBoneMatrix( skinIndex.z ); mat4 boneMatW = getBoneMatrix( skinIndex.w ); #endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING uniform mat4 bindMatrix; uniform mat4 bindMatrixInverse; #ifdef BONE_TEXTURE uniform highp sampler2D boneTexture; uniform int boneTextureSize; mat4 getBoneMatrix( const in float i ) { float j = i * 4.0; float x = mod( j, float( boneTextureSize ) ); float y = floor( j / float( boneTextureSize ) ); float dx = 1.0 / float( boneTextureSize ); float dy = 1.0 / float( boneTextureSize ); y = dy * ( y + 0.5 ); vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) ); vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) ); vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) ); vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) ); mat4 bone = mat4( v1, v2, v3, v4 ); return bone; } #else uniform mat4 boneMatrices[ MAX_BONES ]; mat4 getBoneMatrix( const in float i ) { mat4 bone = boneMatrices[ int(i) ]; return bone; } #endif #endif"; var skinning_vertex = "#ifdef USE_SKINNING vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 ); vec4 skinned = vec4( 0.0 ); skinned += boneMatX * skinVertex * skinWeight.x; skinned += boneMatY * skinVertex * skinWeight.y; skinned += boneMatZ * skinVertex * skinWeight.z; skinned += boneMatW * skinVertex * skinWeight.w; transformed = ( bindMatrixInverse * skinned ).xyz; #endif"; var skinnormal_vertex = "#ifdef USE_SKINNING mat4 skinMatrix = mat4( 0.0 ); skinMatrix += skinWeight.x * boneMatX; skinMatrix += skinWeight.y * boneMatY; skinMatrix += skinWeight.z * boneMatZ; skinMatrix += skinWeight.w * boneMatW; skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix; objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz; #ifdef USE_TANGENT objectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz; #endif #endif"; var specularmap_fragment = "float specularStrength; #ifdef USE_SPECULARMAP vec4 texelSpecular = texture2D( specularMap, vUv ); specularStrength = texelSpecular.r; #else specularStrength = 1.0; #endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP uniform sampler2D specularMap; #endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING ) gl_FragColor.rgb = toneMapping( gl_FragColor.rgb ); #endif"; var tonemapping_pars_fragment = "#ifndef saturate #define saturate( a ) clamp( a, 0.0, 1.0 ) #endif uniform float toneMappingExposure; vec3 LinearToneMapping( vec3 color ) { return toneMappingExposure * color; } vec3 ReinhardToneMapping( vec3 color ) { color *= toneMappingExposure; return saturate( color / ( vec3( 1.0 ) + color ) ); } vec3 OptimizedCineonToneMapping( vec3 color ) { color *= toneMappingExposure; color = max( vec3( 0.0 ), color - 0.004 ); return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) ); } vec3 RRTAndODTFit( vec3 v ) { vec3 a = v * ( v + 0.0245786 ) - 0.000090537; vec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081; return a / b; } vec3 ACESFilmicToneMapping( vec3 color ) { const mat3 ACESInputMat = mat3( vec3( 0.59719, 0.07600, 0.02840 ), vec3( 0.35458, 0.90834, 0.13383 ), vec3( 0.04823, 0.01566, 0.83777 ) ); const mat3 ACESOutputMat = mat3( vec3( 1.60475, -0.10208, -0.00327 ), vec3( -0.53108, 1.10813, -0.07276 ), vec3( -0.07367, -0.00605, 1.07602 ) ); color *= toneMappingExposure / 0.6; color = ACESInputMat * color; color = RRTAndODTFit( color ); color = ACESOutputMat * color; return saturate( color ); } vec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION float transmissionAlpha = 1.0; float transmissionFactor = transmission; float thicknessFactor = thickness; #ifdef USE_TRANSMISSIONMAP transmissionFactor *= texture2D( transmissionMap, vUv ).r; #endif #ifdef USE_THICKNESSMAP thicknessFactor *= texture2D( thicknessMap, vUv ).g; #endif vec3 pos = vWorldPosition; vec3 v = normalize( cameraPosition - pos ); vec3 n = inverseTransformDirection( normal, viewMatrix ); vec4 transmission = getIBLVolumeRefraction( n, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90, pos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor, attenuationColor, attenuationDistance ); totalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor ); transmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor ); #endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION uniform float transmission; uniform float thickness; uniform float attenuationDistance; uniform vec3 attenuationColor; #ifdef USE_TRANSMISSIONMAP uniform sampler2D transmissionMap; #endif #ifdef USE_THICKNESSMAP uniform sampler2D thicknessMap; #endif uniform vec2 transmissionSamplerSize; uniform sampler2D transmissionSamplerMap; uniform mat4 modelMatrix; uniform mat4 projectionMatrix; varying vec3 vWorldPosition; vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) { vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior ); vec3 modelScale; modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) ); modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) ); modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) ); return normalize( refractionVector ) * thickness * modelScale; } float applyIorToRoughness( const in float roughness, const in float ior ) { return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 ); } vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) { float framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior ); #ifdef TEXTURE_LOD_EXT return texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod ); #else return texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod ); #endif } vec3 applyVolumeAttenuation( const in vec3 radiance, const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) { if ( attenuationDistance == 0.0 ) { return radiance; } else { vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance; vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); return transmittance * radiance; } } vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor, const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix, const in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness, const in vec3 attenuationColor, const in float attenuationDistance ) { vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); vec3 refractedRayExit = position + transmissionRay; vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 ); vec2 refractionCoords = ndcPos.xy / ndcPos.w; refractionCoords += 1.0; refractionCoords /= 2.0; vec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior ); vec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance ); vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness ); return vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a ); } #endif"; var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) ) varying vec2 vUv; #endif"; var uv_pars_vertex = "#ifdef USE_UV #ifdef UVS_VERTEX_ONLY vec2 vUv; #else varying vec2 vUv; #endif uniform mat3 uvTransform; #endif"; var uv_vertex = "#ifdef USE_UV vUv = ( uvTransform * vec3( uv, 1 ) ).xy; #endif"; var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP ) varying vec2 vUv2; #endif"; var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP ) attribute vec2 uv2; varying vec2 vUv2; uniform mat3 uv2Transform; #endif"; var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP ) vUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy; #endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) vec4 worldPosition = vec4( transformed, 1.0 ); #ifdef USE_INSTANCING worldPosition = instanceMatrix * worldPosition; #endif worldPosition = modelMatrix * worldPosition; #endif"; const vertex$g = "varying vec2 vUv; uniform mat3 uvTransform; void main() { vUv = ( uvTransform * vec3( uv, 1 ) ).xy; gl_Position = vec4( position.xy, 1.0, 1.0 ); }"; const fragment$g = "uniform sampler2D t2D; varying vec2 vUv; void main() { gl_FragColor = texture2D( t2D, vUv ); #include #include }"; const vertex$f = "varying vec3 vWorldDirection; #include void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include gl_Position.z = gl_Position.w; }"; const fragment$f = "#include uniform float opacity; varying vec3 vWorldDirection; #include void main() { vec3 vReflect = vWorldDirection; #include gl_FragColor = envColor; gl_FragColor.a *= opacity; #include #include }"; const vertex$e = "#include #include #include #include #include #include #include varying vec2 vHighPrecisionZW; void main() { #include #include #ifdef USE_DISPLACEMENTMAP #include #include #include #endif #include #include #include #include #include #include #include vHighPrecisionZW = gl_Position.zw; }"; const fragment$e = "#if DEPTH_PACKING == 3200 uniform float opacity; #endif #include #include #include #include #include #include #include #include varying vec2 vHighPrecisionZW; void main() { #include vec4 diffuseColor = vec4( 1.0 ); #if DEPTH_PACKING == 3200 diffuseColor.a = opacity; #endif #include #include #include #include float fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5; #if DEPTH_PACKING == 3200 gl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity ); #elif DEPTH_PACKING == 3201 gl_FragColor = packDepthToRGBA( fragCoordZ ); #endif }"; const vertex$d = "#define DISTANCE varying vec3 vWorldPosition; #include #include #include #include #include #include void main() { #include #include #ifdef USE_DISPLACEMENTMAP #include #include #include #endif #include #include #include #include #include #include #include vWorldPosition = worldPosition.xyz; }"; const fragment$d = "#define DISTANCE uniform vec3 referencePosition; uniform float nearDistance; uniform float farDistance; varying vec3 vWorldPosition; #include #include #include #include #include #include #include void main () { #include vec4 diffuseColor = vec4( 1.0 ); #include #include #include float dist = length( vWorldPosition - referencePosition ); dist = ( dist - nearDistance ) / ( farDistance - nearDistance ); dist = saturate( dist ); gl_FragColor = packDepthToRGBA( dist ); }"; const vertex$c = "varying vec3 vWorldDirection; #include void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include }"; const fragment$c = "uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); #include #include }"; const vertex$b = "uniform float scale; attribute float lineDistance; varying float vLineDistance; #include #include #include #include #include #include void main() { vLineDistance = scale * lineDistance; #include #include #include #include #include #include #include }"; const fragment$b = "uniform vec3 diffuse; uniform float opacity; uniform float dashSize; uniform float totalSize; varying float vLineDistance; #include #include #include #include #include void main() { #include if ( mod( vLineDistance, totalSize ) > dashSize ) { discard; } vec3 outgoingLight = vec3( 0.0 ); vec4 diffuseColor = vec4( diffuse, opacity ); #include #include outgoingLight = diffuseColor.rgb; #include #include #include #include #include }"; const vertex$a = "#include #include #include #include #include #include #include #include #include #include void main() { #include #include #include #if defined ( USE_ENVMAP ) || defined ( USE_SKINNING ) #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include }"; const fragment$a = "uniform vec3 diffuse; uniform float opacity; #ifndef FLAT_SHADED varying vec3 vNormal; #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void main() { #include vec4 diffuseColor = vec4( diffuse, opacity ); #include #include #include #include #include #include ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) ); #ifdef USE_LIGHTMAP vec4 lightMapTexel= texture2D( lightMap, vUv2 ); reflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity; #else reflectedLight.indirectDiffuse += vec3( 1.0 ); #endif #include reflectedLight.indirectDiffuse *= diffuseColor.rgb; vec3 outgoingLight = reflectedLight.indirectDiffuse; #include #include #include #include #include